Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 68-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is an exposition of various aspects of amenability and paradoxical decompositions for groups, group actions and metric spaces. First, we review the formalism of pseudogroups, which is well adapted to stating the alternative of Tarski, according to which a pseudogroup without invariant mean gives rise to paradoxical decompositions, and to defining a Følner condition. Using a Hall-Rado Theorem on matchings in graphs, we show then for pseudogroups that existence of an invariant mean is equivalent to the Følner condition; in the case of the pseudogroup of bounded perturbations of the identity on a discrete metric space, these conditions are moreover equivalent to the negation of the Gromov's so-called doubling condition, to isoperimetric conditions, to Kesten's spectral condition for related simple random walks, and to various other conditions. We define also the minimal Tarski number of paradoxical decompositions associated to a non-amenable group action (an integer $\ge 4$), and we indicate numerical estimates (Sections II.4 and IV.2). The final chapter explores for metric spaces the notion of superamenability, due for groups to Rosenblatt.
@article{TRSPY_1999_224_a4,
     author = {P. de la Harpe and R. I. Grigorchuk and T. Ceccherini-Silberstein},
     title = {Amenability and {Paradoxical} {Decompositions} for {Pseudogroups} and for {Discrete} {Metric} {Spaces}},
     journal = {Informatics and Automation},
     pages = {68--111},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/}
}
TY  - JOUR
AU  - P. de la Harpe
AU  - R. I. Grigorchuk
AU  - T. Ceccherini-Silberstein
TI  - Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
JO  - Informatics and Automation
PY  - 1999
SP  - 68
EP  - 111
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/
LA  - ru
ID  - TRSPY_1999_224_a4
ER  - 
%0 Journal Article
%A P. de la Harpe
%A R. I. Grigorchuk
%A T. Ceccherini-Silberstein
%T Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
%J Informatics and Automation
%D 1999
%P 68-111
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/
%G ru
%F TRSPY_1999_224_a4
P. de la Harpe; R. I. Grigorchuk; T. Ceccherini-Silberstein. Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces. Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 68-111. http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/

[1] Adelson-Velskii G. M., Shreider Yu. A., “Banakhovo srednee na gruppakh”, UMN, 12:6 (1957), 131–136 | MR

[2] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[3] Adyan S. I., “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh Bernsaida”, Izv. AN SSSR. Ser. mat., 46:6 (1982), 1139–1149 | MR | Zbl

[4] Ahlfors L., “Zur Theorie der Überlagerungsflächen”, Acta math., 65 (1935), 157–194 | DOI | MR

[5] Akemann C. A., Walter M. E., “Unbounded negative definite functions”, Canad. J. Math., 33 (1981), 862–871 | MR | Zbl

[6] Anantharaman-Delaroche C., Renault J., Amenable groupoids, Prépubl., Univ. Orléans, 1998

[7] Ancona A., “Théorie du potentiel sur les graphes et les variétés”, École d'été de probabilités de Saint-Flour XVIII–1988, Lect. Notes Math., 1427, Springer, N. Y. etc., 1990, 4–112 | MR

[8] Anosov D. V., “O vklade N. N. Bogolyubova v teoriyu dinamicheskikh sistem”, UMN, 49:5 (1994), 5–20 | MR | Zbl

[9] Bédos E., Harpe P. de la., “Moyennabilité intérieure des groupes: définitions et exemples”, Enseign. math., 32 (1986), 139–157 | MR | Zbl

[10] Bekka M. E. B., “Amenable unitary representations of locally compact groups”, Invent. Math., 100 (1990), 383–401 | DOI | MR | Zbl

[11] Bekka M. E. B., Cherix P. A., Valette A., “Proper affine isometric actions of amenable groups Novikov conjectures, index theorems and rigidity” (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 1–4 | MR | Zbl

[12] Beklaryan L. A., “O klassifikatsii sokhranyayuschikh orientatsiyu grupp gomeomorfizmov $\mathbb R$. I: Invariantnye mery”, Mat. sb., 187:3 (1996), 23–54 ; “II: Проективно инвариантные меры”, 3–28 | MR | Zbl | MR | Zbl

[13] Benjamini I., Schramm O., “Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant”, Geom. and Funct. Anal., 7 (1997), 403–419 | DOI | MR | Zbl

[14] Biggs N. L., Mohar B., Shawe-Taylor J., “The spectral radius of infinite graphs”, Bull. London Math. Soc., 20 (1988), 116–120 | DOI | MR | Zbl

[15] Block J., Weinberger S., “Aperiodic tilings, positive scalar curvature, and amenability of spaces”, J. Amer. Math. Soc., 5 (1992), 907–918 | DOI | MR | Zbl

[16] Block J., Weinberger S., “Large scale homology theories and geometry”, Geometric topology, Stud. in Adv. Math., 2, pt 1, ed. Kazez W. H., Amer. Math. Soc., 1997, 522–569 | MR | Zbl

[17] Bogolyubov N. N., “Pro deyaki ergodichni vlastivosti grup neperervnikh peretvoren”, Nauk. zap. Kiïv. un-tu. Fizika–Matematika, 4:3 (1939), 45–53; Избранные труды, т. 1, Наук. думка, Киев, 1969, 561–569

[18] Bogopolski O. V., Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent, Preprint, Bochum–Novosibirsk, aug. 1996 | Zbl

[19] Bollobás B., Graph theory, an introductory course, Graduate Texts in Mathematics, 63, Springer, Berlin, 1979 | MR | Zbl

[20] Bowditch B. H., Continuously many quasiisometry classes of 2-generator groups, Preprint, Univ. Southampton, july 1996

[21] Brown K. S., Geoghegan R., “An infinite-dimensional torsion-free $FP_{\infty}$ group”, Invent. Math., 77 (1984), 367–381 | DOI | MR | Zbl

[22] Brooks R., “The fundamental group and the spectrum of the Laplacian”, Comment. Math. Helv., 56 (1981), 581–598 | DOI | MR | Zbl

[23] Buser P., “A note on the isoperimetric constant”, Ann. Sci. Ecole Norm. Sup., 15 (1982), 213–230 | MR | Zbl

[24] Cannon J. W., Floyd W. J., Parry W. R., “Introductory notes on Richard Thompson's groups”, Enseign. math., 42 (1996), 215–256 | MR | Zbl

[25] Champetier C., “L'espace des groupes de type fini”, Topology, 39:4 (2000), 657–680 | DOI | MR | Zbl

[26] Cheeger J., “A lower bound for the smallest eigenvalue of the Laplacian”, Problems in Analysis, ed. Gunning R. C., Princeton Univ. Press, 1970, 195–199 | MR | Zbl

[27] Cheeger J., Gromov M., “$L_2$-cohomology and group cohomology”, Topology, 25 (1986), 189–215 | DOI | MR | Zbl

[28] Chou C., “Elementary amenable groups”, Ill. J. Math., 24 (1980), 396–407 | MR | Zbl

[29] Clifford A. H., Preston G. B., The algebraic theory of semigroups, v. 1, Amer. Math. Soc., Providence, R.I., 1961 ; v. 2, Math. Surv., 7, 1967 | MR | MR

[30] Connes A., “On the classification of von Neumann algebras and their automorphisms”, Sympos. Math., 20 (1976), 435–478 | MR | Zbl

[31] Connes A., Noncommutative geometry, Acad. Press, N. Y., 1994 | MR | Zbl

[32] Connes A., Feldman J., Weiss B., “An amenable equivalence relation is generated by a single transformation”, Ergod. Theory and Dyn. Syst., 1 (1981), 431–450 | MR | Zbl

[33] Connes A., Weiss B., “Property T and asymptotically invariant sequences”, Israel J. Math., 37 (1980), 209–210 | DOI | MR | Zbl

[34] Coulhon T., Saloff-Coste L., “Isopérimétrie pour les groupes et les variétés”, Rev. Mat. Iberoamer, 9 (1993), 293–314 | MR | Zbl

[35] Cuntz J., “K-theoretic amenability for discrete groups”, J. reine und angew. Math., 344 (1983), 180–195 | MR | Zbl

[36] Cowling M., Haagerup U., “Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one”, Invent. Math., 96 (1989), 507–549 | DOI | MR | Zbl

[37] Day M. M., “Amenable semigroups”, Ill. J. Math., 1 (1957), 509–544 | MR | Zbl

[38] Day M. M., “Fixed-point theorems for compact convex sets”, Ill. J. Math., 5 (1961), 585–590 | MR | Zbl

[39] Day M. M., “Convolutions, means, and spectra”, Ill. J. Math., 8 (1964), 100–111 | MR | Zbl

[40] Deuber W. A., Simonovitz M., Sós V. T., “A note on paradoxical metric spaces”, Stud. math., 30 (1995), 17–23 | MR | Zbl

[41] Dodziuk J., “Difference equations, isoperimetric inequality, and transience of certain random walks”, Trans. Amer. Math. Soc., 284 (1984), 787–794 | DOI | MR | Zbl

[42] Dodziuk J., Karp L., “Spectra and function theory for combinatorial Laplacians”, Contemp. Math., 73 (1988), 25–40 | MR | Zbl

[43] Dodziuk J., Kendall W. S., “Combinatorial Laplacians and isoperimetric inequality”, From local times to global geometry, control and physics, Pitman Res. Notes Math. Ser., 150, ed. Elworthy K. D., Pitman Publ., London etc., 1986, 68–74 | MR | Zbl

[44] Dougherty R., Foreman M., “Banach–Tarski decompositions using sets with the property of Baire”, J. Amer. Math. Soc., 7 (1994), 75–124 | DOI | MR | Zbl

[45] Eckmann B., “Amenable groups and Euler characteristic”, Comment. Math. Helv., 67 (1992), 383–393 | DOI | MR | Zbl

[46] Effros E. G., “Property $\Gamma$ and inner amenability”, Proc. Amer. Math. Soc., 47 (1975), 483–486 | DOI | MR | Zbl

[47] Elek G., “The K-theory of Gromov's translation algebras and the amenability of discrete groups”, Proc. Amer. Math. Soc., 125 (1997), 2551–2553 | DOI | MR | Zbl

[48] Elek G., “Amenability, $\ell_p$-homologies and translation invariant functionals”, J. Austral. Math. Soc. A, 64 (1998), 111–119 | DOI | MR

[49] Eymard P., Moyennes invariantes et représentations unitaires, Lect. Notes Math., 300, Springer-Verl., Berlin, 1972 | MR | Zbl

[50] Eymard P., “Initiation à la théorie des groupes moyennables”, Lect. Notes Math., 497, 1975, 89–107 | MR | Zbl

[51] Følner E., “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254 | MR

[52] Gerl P., “Random walks on graphs with a strong isoperimetric inequality”, J. Theor. Probab., 1 (1988), 171–187 | DOI | MR | Zbl

[53] Giordano T., Harpe P. de la, “Groupes de tresses et moyennabilité intérieure”, Ark. för mat., 29 (1991), 63–72 | DOI | MR | Zbl

[54] Giordano T., Harpe P. de la, “Moyennabilité des groupes dénombrables et actions sur les espaces de Cantor”, C. R. Acad. sci. Paris, sér. 1, 324 (1997), 1255–1258 | MR | Zbl

[55] Grinlif F. P., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1969

[56] Greenleaf F. P., “Amenable actions of locally compact groups”, J. Funct. Anal., 4 (1969), 295–315 | DOI | MR | Zbl

[57] Grigorchuk R. I., “Symmetrical random walks on discrete groups”, Multicomponent random systems, Adv. in Probab. and Rel. Top., 6, eds. Dobrushin R. L., Sinai Ya. G., Griffeath D., Dekker, N. Y. etc., 1980, 285–325 | MR

[58] Grigorchuk R. I., “Stepeni rosta konechno porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR

[59] Grigorchuk R. I., “O stepenyakh rosta $p$-grupp i svobodnykh ot krucheniya grupp”, Mat. sb., 126:2 (1985), 194–214 | MR | Zbl

[60] Grigorchuk R. I., “Superamenabelnost i problema vkhozhdeniya svobodnykh polugrupp”, Funktsion. analiz i ego pril., 21:1 (1987), 74–75 | MR | Zbl

[61] Grigorchuk R. I., “O topologicheskikh i metricheskikh tipakh poverkhnostei regulyarno nakryvayuschikh zamknutuyu poverkhnost”, Izv. AN SSSR. Ser. mat., 53:3 (1989), 498–536 | MR | Zbl

[62] Grigorchuk R. I., “O probleme Deya ob neelementarnykh amenabelnykh gruppakh v klasse konechno predstavlennykh grupp”, Mat. zametki, 60:5 (1996), 774–775 | MR | Zbl

[63] Grigorchuk R. I., “Primer konechno predstavlenoi amenabelnoi gruppy, ne prinadlezhaschei klassu EG”, Mat. sb., 189:1 (1998), 79–100 | MR | Zbl

[64] Grigorchuk R. I., Harpe P. de la, “On problems related to growth, entropy and spectrum in group theory”, J. Dyn. and Contr. Syst., 3 (1997), 51–89 | DOI | MR | Zbl

[65] Gromov M., Lafontaine J., Pansu P., Structures métriques pour les variétés riemanniennes, Textes Math., 1, CEDIC/ F. Nathan Co., Paris, 1981 | MR | Zbl

[66] Gromov M., “Volume and bounded cohomology”, Publ. IHES, 56 (1982), 1–99 | MR

[67] Gromov M., “Hyperbolic groups”, Essays in group theory, MSRI. Publ., 8, ed. Gerstern S. M., Springer, N. Y. etc., 1987, 75–263 | MR

[68] Gromov M., “Asymptotic invariants of infinite groups”, Geometric group theory, v. 2, London Math. Soc. Lect. Notes Ser., 182, eds. Niblo G. A., Roller M. A., Cambridge Univ. Press, 1993 | MR | Zbl

[69] Harpe P. de la, “Moyennabilité de quelques groupes topologiques de dimension infinie”, C. R. Acad. sci. Paris A, 277 (1973), 1037–1040 | MR | Zbl

[70] Harpe P. de la, “Moyennabilité du groupe unitaire et propriété $P$ de Schwartz des algèbres de von Neumann”, Algèbres d'opérateurs, Sém. (Les Plans-sur-Bex, 1978), Lect. Notes Math., 725, Springer, N. Y. etc., 1979, 220–227 | MR

[71] Harpe P. de la, “Classical groups and classical Lie algebras of operators”, Operator algebras and applications, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., 1982, 477–513 | MR

[72] Harpe P. de la, “Free groups in linear groups”, Enseign. math., 29 (1983), 129–144 | MR | Zbl

[73] Harpe P. de la, Skandalis G., “Un résultat de Tarski sur les actions moyennables de groupes et les partitions paradoxales”, Enseign. math., 32 (1986), 121–138 | MR | Zbl

[74] Harpe P. de la, Skandalis G., “Les réseaux dans les groupes semi-simples ne sont pas intérieurement moyennables”, Enseign. math., 40 (1994), 291–311 | MR | Zbl

[75] Harris T. E., “Transient Markov chains with stationary measures”, Proc. Amer. Math. Soc., 8 (1957), 937–942 | DOI | MR | Zbl

[76] Hayman W. K., Meromorphic functions, Oxford Univ. Press, 1964 | MR | Zbl

[77] Khelemskii A. Ya., Gomologii banakhovykh i topologicheskikh algebr, Izd-vo MGU, M., 1986

[78] Iwasawa K., “On some types of topological groups”, Ann. Math., 50 (1949), 507–557 | DOI | MR

[79] Johnson B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, 1972 | MR | Zbl

[80] Jolissaint P., “Moyennabilité intérieure du groupe $F$ de Thompson”, C. R. Acad. sci. Paris, sér. 1, 325 (1997), 61–64 | MR | Zbl

[81] Julg P., Travaux de N. Higson et G. Kasparov sur la conjecture de Baum–Connes, Sém. Bourbaki, 481, 1988

[82] Kaimanovich V., “Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operators”, Pot. Anal., 1 (1992), 61–82 | DOI | MR | Zbl

[83] Kaimanovich V., Equivalence relations with amenable leaves need not be amenable, Preprint, Univ. Rennes, 1997 | MR

[84] Kaimanovich V., Amenability, hyperfiniteness and isoperimetric inequalities, Preprint, Univ. Rennes, 1997 | MR

[85] Kanai M., “Rough isometries and the parabolicity of Riemannian manifolds”, J. Math. Soc. Japan, 38 (1986), 227–238 | DOI | MR | Zbl

[86] Kanai M., “Analytic inequalities, and rough isometries between non-compact Riemannian manifolds”, Curvature and topology of Riemannian manifolds, Proc. (Katata, 1985), Lect. Notes Math., 1201, Springer, N. Y. etc., 1986, 122–137 | MR

[87] Katznelson Y., Weiss B., “The classification of non-singular actions, revisited”, Ergod. Theory and Dyn. Syst., 11 (1991), 333–348 | MR | Zbl

[88] Kazhdan D., “Svyaz dualnogo prostranstva gruppy so strukturoi ego zamknutykh podgrupp”, Funktsion. analiz i ego pril., 1 (1967), 71–74 | Zbl

[89] Kelley J. L., General topology, Van Nostrand, Princeton, N. J., 1955 ; Keli Dzh. L., Obschaya topologiya, Nauka, M., 1981 | MR | Zbl

[90] Kesten H., “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92 (1959), 336–354 | DOI | MR | Zbl

[91] Kesten H., “Full Banach mean values on countable groups”, Math. scand., 7 (1959), 146–156 | MR | Zbl

[92] Kobayashi S., Nomizu K., Foundations of differential geometry, 1, Intersci. Publ., New York–London, 1963 ; Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, Nauka, M., 1981 | MR

[93] Mazurov V. D., Khukhro E. I. (red.), Nereshennye problemy teorii grupp – Kourovskaya tetrad, 13-e izd., Novosibirsk, 1995

[94] Kumjian A., Pask D., Raeburn I., Cuntz–Krieger algebras of directed graphs, Preprint, Univ. Nevada and Univ., Newcastle (Australia), oct. 1996 | MR

[95] Kumjian A., Pask D., Raeburn I., Renault J., “Graphs, groupoids, and Cuntz–Krieger algebras”, J. Funct. Anal., 144 (1997), 505–541 | DOI | MR

[96] Laczkovich M., “Equidecomposability and discrepancy; a solution of Tarski's circle squaring problem”, J. reine und angew. Math. (Crelles J.), 404 (1990), 17–117 | MR

[97] Lott J., “The zero-in-the-spectrum question”, Enseign. math., 42 (1996), 341–376 | MR | Zbl

[98] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Birkhäuser, Boston etc., 1994 | MR | Zbl

[99] Lubotzky A., “Cayley graphs: eigenvalues, expanders and random walks”, Surveys in combinatorics, 1995, ed. Rowlinson P., Cambridge Univ. Press, 1995, 155–189 | MR | Zbl

[100] McMullen C., “Amenability, Poincaré series and quasiconformal maps”, Invent. Math., 97 (1989), 95–127 | DOI | MR | Zbl

[101] McMullen C., “Riemann surfaces and the geometrization of 3-manifolds”, Bull. Amer. Math. Soc. New Ser., 27 (1992), 207–216 | DOI | MR | Zbl

[102] Markvorsen S., McGuiness S., Thomassen C., “Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces”, Proc. London Math. Soc., 64 (1992), 1–20 | DOI | MR | Zbl

[103] Mirsky L., Transversal theory, Acad. Press, 1971 | MR

[104] Moore C. C., “Amenable subgroups of semisimple groups and proximal flows”, Israel J. Math., 34 (1979), 121–138 | DOI | MR | Zbl

[105] Namioka I., “Følner's condition for amenable semi-groups”, Math. scand., 15 (1964), 18–28 | MR | Zbl

[106] Nash-Williams C. St. J. A., “Marriage in denumerable societies”, J. Combin. Theory A, 19 (1975), 335–366 | DOI | MR | Zbl

[107] Nekrashevych V., Nets of metric spaces, Preprint, State Univ., Kiev, 1996

[108] Nekrashevych V., “Quasi-isometric nonamenable groups are bi-Lipschitz equivalent”, C. R. Acad. sci. Paris (to appear)

[109] Neumann H., Varieties of groups, Springer-Verl., Berlin, 1967 | MR

[110] Neumann J. von., “Zur allgemeinen Theorie des Masses”, Fund. math., 13 (1929), 73–116 | Zbl

[111] Nevanlinna R., Analytic functions, Springer-Verl., Berlin, 1970 | MR | Zbl

[112] Olshanskii A. Yu., “K probleme suschestvovaniya invariantnogo srednego na gruppe”, UMN, 35:4 (1980), 199–200 | MR

[113] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[114] Ornstein D. S., Weiss B., “Entropy and isomorphism theorems for actions of amenable groups”, J. Anal. Math., 48 (1987), 1–141 | DOI | MR | Zbl

[115] Ossermann R., “The isoperimetric inequality”, Bull. Amer. Math. Soc., 84 (1978), 1182–123 | DOI | MR

[116] Papasoglu P., “Homogeneous trees are bi-Lipschitz equivalent”, Geom. Dedicata, 54 (1995), 301–306 | DOI | MR | Zbl

[117] Paterson A. T., Amenability, Math. Surv. and Monogr., 29, Amer. Math. Soc., Providence, R.I., 1988 | MR | Zbl

[118] Pisier G., “The similarity degree of an operator algebra”, Algebra i analiz, 10:1 (1998), 132–186 | MR | Zbl

[119] Pittet C., Saloff-Coste L., “Amenable groups, isoperimetric profiles and random walks”, Geometric group theory down under (Canberra, 1996), de Gruyter, Berlin, 1999, 293–316 | MR | Zbl

[120] Popa S., Classification of subfactors and of their endomorphisms, CBMS Lect. Notes, 86, Amer. Math. Soc., Providence, R.I., 1995 | MR | Zbl

[121] Popa S., Amenability in the theory of subfactors, Preprint, Univ. Geneva, 1997 | MR

[122] Pruitt W. E., “Eigenvalues of non-negative matrices”, Ann. Math. Stat., 35 (1964), 1797–1800 | DOI | MR | Zbl

[123] Reiter H., Classical harmonic analysis and locally compact groups, Oxford Univ. Press, 1968 | MR | Zbl

[124] Rickert N. W., “Some properties of locally compact groups”, J. Austral. Math. Soc., 7 (1967), 433–454 | DOI | MR | Zbl

[125] Rickert N. W., “Amenable groups and groups with the fixed point property”, Trans. Amer. Math. Soc., 127 (1967), 221–232 | DOI | MR | Zbl

[126] Rosenblatt J. M., “A generalization of Følner's condition”, Math. scand., 33 (1973), 153–170 | MR | Zbl

[127] Rosenblatt J. M., “Invariant measures and growth conditions”, Trans. Amer. Math. Soc., 193 (1974), 33–53 | DOI | MR | Zbl

[128] Sacksteder R., “Foliations and pseudogroups”, Amer. J. Math., 87 (1965), 79–102 | DOI | MR | Zbl

[129] Schmidt K., “Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions”, Ergod. Theory and Dyn. Syst., 1 (1981), 223–236 | MR | Zbl

[130] Shirvanyan V. L., “Vlozhenie gruppy $B(\infty,n)$ v gruppu $B(2,n)$”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 190–208 | MR | Zbl

[131] Soardi P. M., Potential theory on infinite networks, Lect. Notes Math., 1590, Springer, N. Y. etc., 1994 | MR | Zbl

[132] Stepin A. M., “Approximation of groups and group actions, the Cayley topology”, Ergodic theory of $\mathbb Z^d$-actions, eds. Pollicott M., Schmidt K., Cambridge Univ. Press, 1996, 475–484 | MR | Zbl

[133] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, t. 2, Izd-vo inostr. lit., M., 1962

[134] Tarski A., Collected papers, Birkhäuser, Basel etc., 1986, 1–4 | Zbl

[135] Tarski A., “Sur les fonctions additives dans les classes abstraites et leurs applications au problème de la mesure”, C. R. Séances Soc. Sci. Lett. Varsovie. Cl. 3, 22 (1929), 114–117 ; Collected papers, v. 1, 245–248 | Zbl

[136] Tarski A., “Algebraische Fassung des Massproblems”, Fund. math., 31 (1938), 47–66

[137] Tarski A., Cardinal algebras, Oxford Univ. Press, 1949 | MR | Zbl

[138] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1979), 250–270 | DOI | MR

[139] Varopoulos N., “Isoperimetric inequalities and Markov chains”, J. Funct. Anal., 63 (1985), 215–239 | DOI | MR | Zbl

[140] Wagon S., The Banach–Tarski paradox, Cambridge Univ. Press, 1985 | MR | Zbl

[141] Weiss B., “Orbit equivalence of nonsingular actions”, Ergodic theory, Sem. (Les Plans-sur-Bex, 1980), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 77–107 | MR

[142] Whyte K., Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture, Preprint, Univ. Chicago, oct. 6, 1997

[143] Woess W., “Random walks on infinite graphs and groups – a survey on selected topics”, Bull. London Math. Soc., 26 (1994), 1–60 | DOI | MR | Zbl

[144] Zimmer R. J., Ergodic theory and semi-simple groups, Birkhäuser, Basel etc., 1984 | MR | Zbl

[145] Zorich V. A., Keselman V. M., “O konformnom tipe rimanovogo mnogoobraziya”, Funktsion. analiz i ego pril., 30:2 (1996), 40–55 | MR | Zbl