Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 68-111

Voir la notice de l'article provenant de la source Math-Net.Ru

This is an exposition of various aspects of amenability and paradoxical decompositions for groups, group actions and metric spaces. First, we review the formalism of pseudogroups, which is well adapted to stating the alternative of Tarski, according to which a pseudogroup without invariant mean gives rise to paradoxical decompositions, and to defining a Følner condition. Using a Hall-Rado Theorem on matchings in graphs, we show then for pseudogroups that existence of an invariant mean is equivalent to the Følner condition; in the case of the pseudogroup of bounded perturbations of the identity on a discrete metric space, these conditions are moreover equivalent to the negation of the Gromov's so-called doubling condition, to isoperimetric conditions, to Kesten's spectral condition for related simple random walks, and to various other conditions. We define also the minimal Tarski number of paradoxical decompositions associated to a non-amenable group action (an integer $\ge 4$), and we indicate numerical estimates (Sections II.4 and IV.2). The final chapter explores for metric spaces the notion of superamenability, due for groups to Rosenblatt.
@article{TRSPY_1999_224_a4,
     author = {P. de la Harpe and R. I. Grigorchuk and T. Ceccherini-Silberstein},
     title = {Amenability and {Paradoxical} {Decompositions} for {Pseudogroups} and for {Discrete} {Metric} {Spaces}},
     journal = {Informatics and Automation},
     pages = {68--111},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/}
}
TY  - JOUR
AU  - P. de la Harpe
AU  - R. I. Grigorchuk
AU  - T. Ceccherini-Silberstein
TI  - Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
JO  - Informatics and Automation
PY  - 1999
SP  - 68
EP  - 111
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/
LA  - ru
ID  - TRSPY_1999_224_a4
ER  - 
%0 Journal Article
%A P. de la Harpe
%A R. I. Grigorchuk
%A T. Ceccherini-Silberstein
%T Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
%J Informatics and Automation
%D 1999
%P 68-111
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/
%G ru
%F TRSPY_1999_224_a4
P. de la Harpe; R. I. Grigorchuk; T. Ceccherini-Silberstein. Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces. Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 68-111. http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a4/