Solution to Singularly Perturbed Boundary Value Problems by the Duck Hunting Method
Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 187-207
Voir la notice de l'article provenant de la source Math-Net.Ru
A situation is analyzed when two different curves of slow motion intersect in a general way in a two-dimensional relaxation system. It is shown that this situation gives rise to the so-called duck trajectories. The results of the analysis are applied to the construction of the asymptotics of the principal eigenvalue of the Dirichlet problem for a singularly perturbed Schrödinger equation.
@article{TRSPY_1999_224_a11,
author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
title = {Solution to {Singularly} {Perturbed} {Boundary} {Value} {Problems} by the {Duck} {Hunting} {Method}},
journal = {Informatics and Automation},
pages = {187--207},
publisher = {mathdoc},
volume = {224},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a11/}
}
TY - JOUR AU - A. Yu. Kolesov AU - E. F. Mishchenko AU - N. Kh. Rozov TI - Solution to Singularly Perturbed Boundary Value Problems by the Duck Hunting Method JO - Informatics and Automation PY - 1999 SP - 187 EP - 207 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a11/ LA - ru ID - TRSPY_1999_224_a11 ER -
%0 Journal Article %A A. Yu. Kolesov %A E. F. Mishchenko %A N. Kh. Rozov %T Solution to Singularly Perturbed Boundary Value Problems by the Duck Hunting Method %J Informatics and Automation %D 1999 %P 187-207 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a11/ %G ru %F TRSPY_1999_224_a11
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Solution to Singularly Perturbed Boundary Value Problems by the Duck Hunting Method. Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 187-207. http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a11/