Mathematical Work of L.\,S.~Pontryagin
Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 14-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1999_224_a1,
     author = {R. V. Gamkrelidze},
     title = {Mathematical {Work} of {L.\,S.~Pontryagin}},
     journal = {Informatics and Automation},
     pages = {14--27},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a1/}
}
TY  - JOUR
AU  - R. V. Gamkrelidze
TI  - Mathematical Work of L.\,S.~Pontryagin
JO  - Informatics and Automation
PY  - 1999
SP  - 14
EP  - 27
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a1/
LA  - ru
ID  - TRSPY_1999_224_a1
ER  - 
%0 Journal Article
%A R. V. Gamkrelidze
%T Mathematical Work of L.\,S.~Pontryagin
%J Informatics and Automation
%D 1999
%P 14-27
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a1/
%G ru
%F TRSPY_1999_224_a1
R. V. Gamkrelidze. Mathematical Work of L.\,S.~Pontryagin. Informatics and Automation, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 14-27. http://geodesic.mathdoc.fr/item/TRSPY_1999_224_a1/

[1] “Zum Alexanderschen Dualitätssatz”, Nachr. Akad. Wiss. Göttingen. Math.-phys. Kl., 4 (1927), 315–322

[2] “Zum Alexanderschen Dualitätssatz. 2. Mitt”, Nachr. Akad. Wiss. Göttingen. Math.-phys. Kl., 4 (1927), 446–456

[3] “Über den algebraischen Inhalt topologischer Dualitätssätze”, Math. Ann., 105:2 (1931), 165–205 | MR

[4] “Der allgemeine Dualitätssatz für abgeschlossene Mengen”, Verhandl. Intern. Mathematiker–Kongr., Zürich–Leipzig, 1932, 195–197 | Zbl

[5] “The general topological theorem of duality for closed sets”, Ann. Math., 35:4 (1934), 904–914 | DOI | MR

[6] “The theory of topological commutative groups”, Ann. Math., 35:2 (1934), 361–388 | DOI | MR

[7] “Sur les groupes topologique compacts et le cinquième problème de M. Hilbert”, C. R. Acad. sci. Paris, 19:3 (1934), 238–240

[8] “Sur les group abèliens continues”, C. R. Acad. sci. Paris, 19:3 (1934), 328–330