Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain
Informatics and Automation, Local and global problems of singularity theory, Tome 221 (1998), pp. 257-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1998_221_a15,
     author = {O. M. Myasnichenko},
     title = {Symplectic {Morse} {Lemma} and {Trajectories} of {Hamiltonian} {Systems} {Arriving} at the {Boundary} of {Possible} {Motion} {Domain}},
     journal = {Informatics and Automation},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {221},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1998_221_a15/}
}
TY  - JOUR
AU  - O. M. Myasnichenko
TI  - Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain
JO  - Informatics and Automation
PY  - 1998
SP  - 257
EP  - 270
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1998_221_a15/
LA  - ru
ID  - TRSPY_1998_221_a15
ER  - 
%0 Journal Article
%A O. M. Myasnichenko
%T Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain
%J Informatics and Automation
%D 1998
%P 257-270
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1998_221_a15/
%G ru
%F TRSPY_1998_221_a15
O. M. Myasnichenko. Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain. Informatics and Automation, Local and global problems of singularity theory, Tome 221 (1998), pp. 257-270. http://geodesic.mathdoc.fr/item/TRSPY_1998_221_a15/