On the convergence exponent of trigonometric integrals
Informatics and Automation, Analytic number theory and applications, Tome 218 (1997), pp. 179-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of trigonometric sums is one of the most powerful tools in analytic number theory. In particular trigonometric integrals play an important role. Moreover, many problems in both mathematical physics and theory of probability lead to investigation of trigonometric integrals. Namely, it is important asymptotic behavior, estimation and summation exponent with respect to parameters of such integrals. In this paper we consider multi-dimensional trigonometric integrals with polynomial phases and get a lower estimation for convergence exponent of functions defined by such integrals. Moreover, we obtain explicit value of convergence exponent in particular cases.
@article{TRSPY_1997_218_a12,
     author = {I. A. Ikromov},
     title = {On the convergence exponent of trigonometric integrals},
     journal = {Informatics and Automation},
     pages = {179--189},
     publisher = {mathdoc},
     volume = {218},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1997_218_a12/}
}
TY  - JOUR
AU  - I. A. Ikromov
TI  - On the convergence exponent of trigonometric integrals
JO  - Informatics and Automation
PY  - 1997
SP  - 179
EP  - 189
VL  - 218
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1997_218_a12/
LA  - en
ID  - TRSPY_1997_218_a12
ER  - 
%0 Journal Article
%A I. A. Ikromov
%T On the convergence exponent of trigonometric integrals
%J Informatics and Automation
%D 1997
%P 179-189
%V 218
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1997_218_a12/
%G en
%F TRSPY_1997_218_a12
I. A. Ikromov. On the convergence exponent of trigonometric integrals. Informatics and Automation, Analytic number theory and applications, Tome 218 (1997), pp. 179-189. http://geodesic.mathdoc.fr/item/TRSPY_1997_218_a12/