Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
Informatics and Automation, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a general class of expansive $\mathbb Z^d$-actions by automorphisms of compact. Abelian groups with completely positive entropy has “symbolic covers” of equal topological entropy. These symbolic covers are constructed by using homoclinic points of these actions. For $d=1$ we adapt a result of Kenyon and Vershik in [7] to prove that these symbolic covers are, in fact, sofic shifts. For $d\ge2$ we are able t o prove the analogous
statement only for certain examples, where the existence of such covers yields finitary isomorphisms between topologically nonisomorphic $\mathbb Z^2$-actions.
@article{TRSPY_1997_216_a16,
author = {M. Einsiedler and K. Schmidt},
title = {Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions},
journal = {Informatics and Automation},
pages = {265--284},
publisher = {mathdoc},
volume = {216},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/}
}
TY - JOUR AU - M. Einsiedler AU - K. Schmidt TI - Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions JO - Informatics and Automation PY - 1997 SP - 265 EP - 284 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/ LA - en ID - TRSPY_1997_216_a16 ER -
M. Einsiedler; K. Schmidt. Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions. Informatics and Automation, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284. http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/