Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
Informatics and Automation, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a general class of expansive $\mathbb Z^d$-actions by automorphisms of compact. Abelian groups with completely positive entropy has “symbolic covers” of equal topological entropy. These symbolic covers are constructed by using homoclinic points of these actions. For $d=1$ we adapt a result of Kenyon and Vershik in [7] to prove that these symbolic covers are, in fact, sofic shifts. For $d\ge2$ we are able t o prove the analogous statement only for certain examples, where the existence of such covers yields finitary isomorphisms between topologically nonisomorphic $\mathbb Z^2$-actions.
@article{TRSPY_1997_216_a16,
     author = {M. Einsiedler and K. Schmidt},
     title = {Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions},
     journal = {Informatics and Automation},
     pages = {265--284},
     publisher = {mathdoc},
     volume = {216},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/}
}
TY  - JOUR
AU  - M. Einsiedler
AU  - K. Schmidt
TI  - Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
JO  - Informatics and Automation
PY  - 1997
SP  - 265
EP  - 284
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/
LA  - en
ID  - TRSPY_1997_216_a16
ER  - 
%0 Journal Article
%A M. Einsiedler
%A K. Schmidt
%T Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
%J Informatics and Automation
%D 1997
%P 265-284
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/
%G en
%F TRSPY_1997_216_a16
M. Einsiedler; K. Schmidt. Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions. Informatics and Automation, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284. http://geodesic.mathdoc.fr/item/TRSPY_1997_216_a16/