De la Vall\'ee Poussin theorem on the differential inequality for equations with an aftereffect
Informatics and Automation, Optimal control and differential equations, Tome 211 (1995), pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1995_211_a1,
     author = {N. V. Azbelev and L. F. Rakhmatullina},
     title = {De la {Vall\'ee} {Poussin} theorem on the differential inequality for equations with an aftereffect},
     journal = {Informatics and Automation},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {211},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1995_211_a1/}
}
TY  - JOUR
AU  - N. V. Azbelev
AU  - L. F. Rakhmatullina
TI  - De la Vall\'ee Poussin theorem on the differential inequality for equations with an aftereffect
JO  - Informatics and Automation
PY  - 1995
SP  - 32
EP  - 39
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1995_211_a1/
LA  - ru
ID  - TRSPY_1995_211_a1
ER  - 
%0 Journal Article
%A N. V. Azbelev
%A L. F. Rakhmatullina
%T De la Vall\'ee Poussin theorem on the differential inequality for equations with an aftereffect
%J Informatics and Automation
%D 1995
%P 32-39
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1995_211_a1/
%G ru
%F TRSPY_1995_211_a1
N. V. Azbelev; L. F. Rakhmatullina. De la Vall\'ee Poussin theorem on the differential inequality for equations with an aftereffect. Informatics and Automation, Optimal control and differential equations, Tome 211 (1995), pp. 32-39. http://geodesic.mathdoc.fr/item/TRSPY_1995_211_a1/