Multipliers for Laplace hyperfunctions~-- a~justification of Heaviside's rules
Informatics and Automation, Selected problems of mathematical physics and analysis, Tome 203 (1994), pp. 323-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

Holomorphic functions of exponential type on an open sector containing $[a,\infty]$ are multipliers for Laplace hyperfunctions with support in $[a,\infty]$. Their action in the Laplace images is realized as convolutions in the complex domain. In the special case of the exponential $e^{\omega x}$ and the coordinate $x$ it is the shift by $\omega$ and the derivation $-d/d\lambda$ respectively. Bessel's equation is treated as an example.
@article{TRSPY_1994_203_a28,
     author = {H. Komatsu},
     title = {Multipliers for {Laplace} hyperfunctions~-- a~justification of {Heaviside's} rules},
     journal = {Informatics and Automation},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {203},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1994_203_a28/}
}
TY  - JOUR
AU  - H. Komatsu
TI  - Multipliers for Laplace hyperfunctions~-- a~justification of Heaviside's rules
JO  - Informatics and Automation
PY  - 1994
SP  - 323
EP  - 333
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1994_203_a28/
LA  - en
ID  - TRSPY_1994_203_a28
ER  - 
%0 Journal Article
%A H. Komatsu
%T Multipliers for Laplace hyperfunctions~-- a~justification of Heaviside's rules
%J Informatics and Automation
%D 1994
%P 323-333
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1994_203_a28/
%G en
%F TRSPY_1994_203_a28
H. Komatsu. Multipliers for Laplace hyperfunctions~-- a~justification of Heaviside's rules. Informatics and Automation, Selected problems of mathematical physics and analysis, Tome 203 (1994), pp. 323-333. http://geodesic.mathdoc.fr/item/TRSPY_1994_203_a28/