Exzact Jackson inequality in $L_p(0,2\pi)$ $(1\le p2)$
Informatics and Automation, Proceedings of the All-Union school on the theory of functions, Tome 198 (1992), pp. 232-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1992_198_a12,
     author = {N. I. Chernykh},
     title = {Exzact {Jackson} inequality in $L_p(0,2\pi)$ $(1\le p<2)$},
     journal = {Informatics and Automation},
     pages = {232--241},
     publisher = {mathdoc},
     volume = {198},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1992_198_a12/}
}
TY  - JOUR
AU  - N. I. Chernykh
TI  - Exzact Jackson inequality in $L_p(0,2\pi)$ $(1\le p<2)$
JO  - Informatics and Automation
PY  - 1992
SP  - 232
EP  - 241
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1992_198_a12/
LA  - ru
ID  - TRSPY_1992_198_a12
ER  - 
%0 Journal Article
%A N. I. Chernykh
%T Exzact Jackson inequality in $L_p(0,2\pi)$ $(1\le p<2)$
%J Informatics and Automation
%D 1992
%P 232-241
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1992_198_a12/
%G ru
%F TRSPY_1992_198_a12
N. I. Chernykh. Exzact Jackson inequality in $L_p(0,2\pi)$ $(1\le p<2)$. Informatics and Automation, Proceedings of the All-Union school on the theory of functions, Tome 198 (1992), pp. 232-241. http://geodesic.mathdoc.fr/item/TRSPY_1992_198_a12/