On the best constant in Hardy's inequality with $0$ for monotone functions
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 14, Tome 194 (1992), pp. 58-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1992_194_a3,
     author = {V. I. Burenkov},
     title = {On the best constant in {Hardy's} inequality with $0<p<1$ for monotone functions},
     journal = {Informatics and Automation},
     pages = {58--62},
     publisher = {mathdoc},
     volume = {194},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1992_194_a3/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - On the best constant in Hardy's inequality with $0
JO  - Informatics and Automation
PY  - 1992
SP  - 58
EP  - 62
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1992_194_a3/
LA  - ru
ID  - TRSPY_1992_194_a3
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T On the best constant in Hardy's inequality with $0
%J Informatics and Automation
%D 1992
%P 58-62
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1992_194_a3/
%G ru
%F TRSPY_1992_194_a3
V. I. Burenkov. On the best constant in Hardy's inequality with $0