How curves on the universal covering plane that cover nonselfintersecting curves on a~closed surface can go to infinity
Informatics and Automation, Statistical mechanics and the theory of dynamical systems, Tome 191 (1989), pp. 34-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1989_191_a2,
     author = {D. V. Anosov},
     title = {How curves on the universal covering plane that cover nonselfintersecting curves on a~closed surface can go to infinity},
     journal = {Informatics and Automation},
     pages = {34--44},
     publisher = {mathdoc},
     volume = {191},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1989_191_a2/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - How curves on the universal covering plane that cover nonselfintersecting curves on a~closed surface can go to infinity
JO  - Informatics and Automation
PY  - 1989
SP  - 34
EP  - 44
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1989_191_a2/
LA  - ru
ID  - TRSPY_1989_191_a2
ER  - 
%0 Journal Article
%A D. V. Anosov
%T How curves on the universal covering plane that cover nonselfintersecting curves on a~closed surface can go to infinity
%J Informatics and Automation
%D 1989
%P 34-44
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1989_191_a2/
%G ru
%F TRSPY_1989_191_a2
D. V. Anosov. How curves on the universal covering plane that cover nonselfintersecting curves on a~closed surface can go to infinity. Informatics and Automation, Statistical mechanics and the theory of dynamical systems, Tome 191 (1989), pp. 34-44. http://geodesic.mathdoc.fr/item/TRSPY_1989_191_a2/