Estimates for the best bilinear approximations of periodic functions
Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 12, Tome 181 (1988), pp. 250-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1988_181_a15,
     author = {V. N. Temlyakov},
     title = {Estimates for the best bilinear approximations of periodic functions},
     journal = {Informatics and Automation},
     pages = {250--267},
     publisher = {mathdoc},
     volume = {181},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1988_181_a15/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Estimates for the best bilinear approximations of periodic functions
JO  - Informatics and Automation
PY  - 1988
SP  - 250
EP  - 267
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1988_181_a15/
LA  - ru
ID  - TRSPY_1988_181_a15
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Estimates for the best bilinear approximations of periodic functions
%J Informatics and Automation
%D 1988
%P 250-267
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1988_181_a15/
%G ru
%F TRSPY_1988_181_a15
V. N. Temlyakov. Estimates for the best bilinear approximations of periodic functions. Informatics and Automation, Investigations in the theory of differentiable functions of many variables and its applications. Part 12, Tome 181 (1988), pp. 250-267. http://geodesic.mathdoc.fr/item/TRSPY_1988_181_a15/