On the best mean-square approximation, by polynomials and entire functions of exponential type, to functions with a~logarithmic singular point
Informatics and Automation, Theory of functions and related questions of analysis, Tome 180 (1987), pp. 185-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1987_180_a111,
     author = {R. A. Raitsin},
     title = {On the best mean-square approximation, by polynomials and entire functions of exponential type, to functions with a~logarithmic singular point},
     journal = {Informatics and Automation},
     pages = {185--186},
     publisher = {mathdoc},
     volume = {180},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1987_180_a111/}
}
TY  - JOUR
AU  - R. A. Raitsin
TI  - On the best mean-square approximation, by polynomials and entire functions of exponential type, to functions with a~logarithmic singular point
JO  - Informatics and Automation
PY  - 1987
SP  - 185
EP  - 186
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1987_180_a111/
LA  - ru
ID  - TRSPY_1987_180_a111
ER  - 
%0 Journal Article
%A R. A. Raitsin
%T On the best mean-square approximation, by polynomials and entire functions of exponential type, to functions with a~logarithmic singular point
%J Informatics and Automation
%D 1987
%P 185-186
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1987_180_a111/
%G ru
%F TRSPY_1987_180_a111
R. A. Raitsin. On the best mean-square approximation, by polynomials and entire functions of exponential type, to functions with a~logarithmic singular point. Informatics and Automation, Theory of functions and related questions of analysis, Tome 180 (1987), pp. 185-186. http://geodesic.mathdoc.fr/item/TRSPY_1987_180_a111/