The Voronoj polyhedron $\Pi(n)$ for $n=5$ and maximal finite groups of integral $5\times 5$ matrices
Informatics and Automation, Geometry of positive quadratic forms, Tome 152 (1980), pp. 138-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1980_152_a7,
     author = {Z. D. Lomakina},
     title = {The {Voronoj} polyhedron $\Pi(n)$ for $n=5$ and maximal finite groups of integral $5\times 5$ matrices},
     journal = {Informatics and Automation},
     pages = {138--161},
     publisher = {mathdoc},
     volume = {152},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1980_152_a7/}
}
TY  - JOUR
AU  - Z. D. Lomakina
TI  - The Voronoj polyhedron $\Pi(n)$ for $n=5$ and maximal finite groups of integral $5\times 5$ matrices
JO  - Informatics and Automation
PY  - 1980
SP  - 138
EP  - 161
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1980_152_a7/
LA  - ru
ID  - TRSPY_1980_152_a7
ER  - 
%0 Journal Article
%A Z. D. Lomakina
%T The Voronoj polyhedron $\Pi(n)$ for $n=5$ and maximal finite groups of integral $5\times 5$ matrices
%J Informatics and Automation
%D 1980
%P 138-161
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1980_152_a7/
%G ru
%F TRSPY_1980_152_a7
Z. D. Lomakina. The Voronoj polyhedron $\Pi(n)$ for $n=5$ and maximal finite groups of integral $5\times 5$ matrices. Informatics and Automation, Geometry of positive quadratic forms, Tome 152 (1980), pp. 138-161. http://geodesic.mathdoc.fr/item/TRSPY_1980_152_a7/