$T$-products in Bogolubov's axiomatics
Informatics and Automation, International Conference on Mathematical Problems of Quantum Field Theory and Quantum Statistics. Part I. Axiomatic quantum field theory, Tome 135 (1975), pp. 198-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The obvious phenomenon in the classical mechanics, namely the distinction between Hamiltonian $H$ and (minus) Lagrangian $-L$, is described in quantum field theory by two distinct $T$-products. This distinction is reflected in two forms of $S$-matrix – the chronological exponentials, $T_D$ with $H$ and $T_W$ with $-L$ as generators, proposed by second author in 1961. The causal and unitary $S$-matrix requires resp. non-local and non-hermitian Lagrangian in the general type of régularisation. The distinction between $T_D$ and $T_W$, is also clearly seen in Green functions. The field Green functions depend on T-products only of the fields themselves when the classical examples of renormalisable theories are concerned. Generally the renormalisation of Green functions requires taking into consideration the higher field-like quasilocal operators.
@article{TRSPY_1975_135_a21,
     author = {B. V. Medvedev and A. D. Sukhanov},
     title = {$T$-products in {Bogolubov's} axiomatics},
     journal = {Informatics and Automation},
     pages = {198--200},
     publisher = {mathdoc},
     volume = {135},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1975_135_a21/}
}
TY  - JOUR
AU  - B. V. Medvedev
AU  - A. D. Sukhanov
TI  - $T$-products in Bogolubov's axiomatics
JO  - Informatics and Automation
PY  - 1975
SP  - 198
EP  - 200
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1975_135_a21/
LA  - en
ID  - TRSPY_1975_135_a21
ER  - 
%0 Journal Article
%A B. V. Medvedev
%A A. D. Sukhanov
%T $T$-products in Bogolubov's axiomatics
%J Informatics and Automation
%D 1975
%P 198-200
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1975_135_a21/
%G en
%F TRSPY_1975_135_a21
B. V. Medvedev; A. D. Sukhanov. $T$-products in Bogolubov's axiomatics. Informatics and Automation, International Conference on Mathematical Problems of Quantum Field Theory and Quantum Statistics. Part I. Axiomatic quantum field theory, Tome 135 (1975), pp. 198-200. http://geodesic.mathdoc.fr/item/TRSPY_1975_135_a21/