A certain formal method of obtaining the short wave asymptotic properties of the Green's function
Informatics and Automation, Mathematical aspects of the theory of diffraction and distribution of waves. Part 1, Tome 115 (1971), pp. 10-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1971_115_a1,
     author = {V. M. Babich},
     title = {A certain formal method of obtaining the short wave asymptotic properties of the {Green's} function},
     journal = {Informatics and Automation},
     pages = {10--13},
     publisher = {mathdoc},
     volume = {115},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1971_115_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - A certain formal method of obtaining the short wave asymptotic properties of the Green's function
JO  - Informatics and Automation
PY  - 1971
SP  - 10
EP  - 13
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1971_115_a1/
LA  - ru
ID  - TRSPY_1971_115_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T A certain formal method of obtaining the short wave asymptotic properties of the Green's function
%J Informatics and Automation
%D 1971
%P 10-13
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1971_115_a1/
%G ru
%F TRSPY_1971_115_a1
V. M. Babich. A certain formal method of obtaining the short wave asymptotic properties of the Green's function. Informatics and Automation, Mathematical aspects of the theory of diffraction and distribution of waves. Part 1, Tome 115 (1971), pp. 10-13. http://geodesic.mathdoc.fr/item/TRSPY_1971_115_a1/