The sharpness of the Lebesgue estimate for the approximation of functions with prescribed modulus of continuity by Fourier sums
Informatics and Automation, Collection of articles. Part I, Tome 112 (1971), pp. 337-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TRSPY_1971_112_a21,
     author = {K. I. Oskolkov},
     title = {The sharpness of the {Lebesgue} estimate for the approximation of functions with prescribed modulus of continuity by {Fourier} sums},
     journal = {Informatics and Automation},
     pages = {337--345},
     publisher = {mathdoc},
     volume = {112},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_1971_112_a21/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - The sharpness of the Lebesgue estimate for the approximation of functions with prescribed modulus of continuity by Fourier sums
JO  - Informatics and Automation
PY  - 1971
SP  - 337
EP  - 345
VL  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_1971_112_a21/
LA  - ru
ID  - TRSPY_1971_112_a21
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T The sharpness of the Lebesgue estimate for the approximation of functions with prescribed modulus of continuity by Fourier sums
%J Informatics and Automation
%D 1971
%P 337-345
%V 112
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_1971_112_a21/
%G ru
%F TRSPY_1971_112_a21
K. I. Oskolkov. The sharpness of the Lebesgue estimate for the approximation of functions with prescribed modulus of continuity by Fourier sums. Informatics and Automation, Collection of articles. Part I, Tome 112 (1971), pp. 337-345. http://geodesic.mathdoc.fr/item/TRSPY_1971_112_a21/