Bell's Inequality, Its Physical Origins, and Generalization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 101-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical generalization is given of the famous Bell inequality, which arose in connection with the analysis of the classical Einstein–Podolsky–Rosen paradox.
Keywords: Bell's inequality, Clauser–Horne–Shimony–Holt inequality, Einstein–Podolsky–Rosen paradox.
@article{TM_2024_324_a9,
     author = {V. A. Zorich},
     title = {Bell's {Inequality,} {Its} {Physical} {Origins,} and {Generalization}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a9/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Bell's Inequality, Its Physical Origins, and Generalization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 101
EP  - 108
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a9/
LA  - ru
ID  - TM_2024_324_a9
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Bell's Inequality, Its Physical Origins, and Generalization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 101-108
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a9/
%G ru
%F TM_2024_324_a9
V. A. Zorich. Bell's Inequality, Its Physical Origins, and Generalization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 101-108. http://geodesic.mathdoc.fr/item/TM_2024_324_a9/

[1] Aspect A., “Bell's theorem: The naive view of an experimentalist”, Quantum [un]speakables: From Bell to quantum information, Springer, Berlin, 2002, 119–153 | DOI | MR

[2] Bell J.S., “On the Einstein Podolsky Rosen paradox”, Physics, 1:3 (1964), 195–200 | DOI | MR

[3] Bennett C.H., DiVincenzo D.P., Fuchs C.A., Mor T., Rains E., Shor P.W., Smolin J.A., Wootters W.K., “Quantum nonlocality without entanglement”, Phys. Rev. A, 59:2 (1999), 1070–1091 | DOI | MR

[4] Clauser J.F., Horne M.A., Shimony A., Holt R.A., “Proposed experiment to test local hidden-variable theories”, Phys. Rev. Lett., 23:15 (1969), 880–884 ; “Erratum”, Phys. Rev. Lett., 24:10 (1970), 549 | DOI | DOI | MR | Zbl

[5] P. A. M. Dirac, Directions in Physics: Lectures delivered during a visit to Australia and New Zealand, 1975, J. Wiley Sons, New York, 1978 | MR | MR

[6] Einstein A., Podolsky B., Rosen N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 | DOI | Zbl

[7] Einstein–Podolsky–Rosen paradox—Wikipedia, The Free Encyclopedia, 2023 https://en.wikipedia.org/w/index.php?title=Einstein-Podolsky-Rosen_paradox&oldid=1161300102

[8] Feynman R.P., Feynman lectures on computation, Advanced Book Program, Addison-Wesley Publ., Reading, MA, 1996

[9] V. A. Fok, A. Einstein, B. Podolsky, N. Rosen, and N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?”, Usp. Fiz. Nauk, 16:4 (1936), 436–457 | DOI

[10] Greenberger D.M., Horne M.A., Shimony A., Zeilinger A., “Bell's theorem without inequalities”, Am. J. Phys., 58:12 (1990), 1131–1143 | DOI | MR | Zbl

[11] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[12] B. B. Kadomtsev, “Dynamics and information”, Phys. Usp., 37:5 (1994), 425–499 | DOI | DOI | MR

[13] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, Grad. Stud. Math., 47, Am. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl

[14] Manin Yu.I., Vychislimoe i nevychislimoe, Kibernetika, Sov. radio, M., 1980

[15] Yu. I. Manin, Mathematics as Metaphor: Selected essays of Yuri I. Manin, Am. Math. Soc., Providence, RI, 2007 | MR | Zbl

[16] Nikitin N.V., Rasputyvaem zaputannuyu kvantovuyu mekhaniku: Kak my ponimaem neravenstva Bella 52 goda spustya: Nauch. sem. po yadernoi fizike NIIYaF MGU, 18 okt. 2016 http://nuclphys.sinp.msu.ru/nseminar/18.10.16.pdf

[17] Rieffel E., Polak W., “An introduction to quantum computing for non-physicists”, ACM Comput. Surv., 32:3 (2000), 300–335 | DOI | MR

[18] Rubtsov A.N., Prudkovskii P.A., Kulik S.P., Vvedenie v kvantovuyu fiziku, MGU, M., 2013

[19] A. N. Shiryaev, Problems in Probability, Springer, New York, 2012 | MR | Zbl

[20] The Nobel Prize in Physics 2022: Press release https://www.nobelprize.org/prizes/physics/2022/press-release/

[21] Werner R.F., All the Bell inequalities, 2015 http://qig.itp.uni-hannover.de/qiproblems/All_the_Bell_Inequalities

[22] Williamson M., Bell's inequalities and their uses, The quantum theory of information and computation: Lect. course, Univ. Oxford, 2010 http://www.cs.ox.ac.uk/activities/quantum/course/notes/L10/bell100610.pdf | Zbl