Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a6, author = {E. Vl. Bulinskaya}, title = {Propagation of {Branching} {Random} {Walk} on {Periodic} {Graphs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {73--82}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a6/} }
E. Vl. Bulinskaya. Propagation of Branching Random Walk on Periodic Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2024_324_a6/
[1] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. I. Math., 326:8 (1998), 975–980 | DOI | MR | Zbl
[2] Bai T., Rousselin P., “Branching random walks conditioned on particle numbers”, J. Stat. Phys., 185:3 (2021), 20 | DOI | MR | Zbl
[3] Biggins J.D., “The asymptotic shape of the branching random walk”, Adv. Appl. Probab., 10:1 (1978), 62–84 | DOI | MR | Zbl
[4] Biggins J.D., “How fast does a general branching random walk spread?”, Classical and modern branching processes: Proc. IMA Workshop (Minneapolis, 1994), IMA Vol. Math. Appl., 84, ed. by K.B. Athreya, P. Jagers, Springer, New York, 1997, 19–39 | DOI | MR | Zbl
[5] S. S. Bocharov, “Fluctuations of the rightmost particle in the catalytic branching Brownian motion”, Proc. Steklov Inst. Math., 316 (2022), 72–96 | DOI | DOI | MR | Zbl
[6] Brunet É., Le A.D., Mueller A.H., Munier S., “How to generate the tip of branching random walks evolved to large times”, Europhys. Lett., 131:4 (2020), 40002 | DOI
[7] Bulinskaya E.Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl
[8] E. Vl. Bulinskaya, “Maximum of a catalytic branching random walk”, Russ. Math. Surv., 74:3 (2019), 546–548 | DOI | DOI | MR | Zbl
[9] E. Vl. Bulinskaya, “Fluctuations of the propagation front of a catalytic branching walk”, Theory Probab. Appl., 64:4 (2020), 513–534 | DOI | DOI | MR | Zbl
[10] Bulinskaya E.Vl., “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 34:1 (2021), 141–161 | DOI | MR | Zbl
[11] Bulinskaya E.Vl., “Catalytic branching random walk with semi-exponential increments”, Math. Popul. Stud., 28:3 (2021), 123–153 | DOI | MR | Zbl
[12] Carmona Ph., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 327–351 | DOI | MR | Zbl
[13] Chernousova E., Hryniv O., Molchanov S., “Branching random walk in a random time-independent environment”, Math. Popul. Stud., 30:2 (2023), 73–94 | DOI | MR | Zbl
[14] Cranston M., Koralov L., Molchanov S., Vainberg B., “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl
[15] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley and Sons, New York, 1971 | MR | MR | Zbl
[16] Y. Hu, V. A. Topchii, and V. A. Vatutin, “Branching random walk in $\mathbf Z^4$ with branching at the origin only”, Theory Probab. Appl., 56:2 (2012), 193–212 | DOI | DOI | MR | Zbl
[17] Liu R., “The spread speed of multiple catalytic branching random walks”, Acta math. appl. Sin. Engl. Ser., 39:2 (2023), 262–292 | DOI | MR | Zbl
[18] M. V. Platonova and K. S. Ryadovkin, “Branching random walks on $\mathbf Z^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl
[19] M. V. Platonova and K. S. Ryadovkin, “On the variance of the particle number of a supercritical branching random walk on periodic graphs”, J. Math. Sci., 258:6 (2021), 897–911 | DOI | MR | Zbl
[20] M. V. Platonova and K. S. Ryadovkin, “On asymptotic behavior of mean values of some functionals on branching random walk”, J. Math. Sci., 281:1 (2024), 127–141 | DOI | MR | Zbl
[21] Rytova A., Yarovaya E., “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. R. Soc. Edinburgh. Sect. A. Math., 151:3 (2021), 971–992 | DOI | MR | Zbl
[22] B. A. Sewastjanow, Verzweigungsprozesse, Akademie, Berlin, 1974 | MR | Zbl
[23] Shi Z., Branching random walks: École d'Été de Probabilités de Saint-Flour XLII – 2012, Lect. Notes Math., 2151, Springer, Cham, 2015 | DOI | MR
[24] Vatutin V.A., Topchi\u {ı} V.A., Yarovaya E.B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 69 (2004), 1–15 | DOI | MR