Propagation of Branching Random Walk on Periodic Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of a branching random walk on $\mathbb Z^d$ with a periodic set of sources of reproduction and death of particles is studied. For this model, an asymptotic description of the propagation of the population of particles with time is obtained for the first time. The intensities of the sources may be different. The branching regime is assumed to be supercritical, and the tails of the jump distribution of the walk are assumed to be “light.” The main theorem establishes the Hausdorff-metric convergence of the properly normalized random cloud of particles that exist in the branching random walk at time $t$ to the limit set, as $t$ tends to infinity. This convergence takes place for almost all elementary outcomes of the event meaning nondegeneracy of the population of particles under study. The limit set in $\mathbb R^d$, called the asymptotic shape of the population, is found in an explicit form.
Keywords: branching random walk on periodic graphs, supercritical regime, Cramér condition, asymptotic shape of a branching random walk.
Mots-clés : propagation of population
@article{TM_2024_324_a6,
     author = {E. Vl. Bulinskaya},
     title = {Propagation of {Branching} {Random} {Walk} on {Periodic} {Graphs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a6/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - Propagation of Branching Random Walk on Periodic Graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 73
EP  - 82
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a6/
LA  - ru
ID  - TM_2024_324_a6
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T Propagation of Branching Random Walk on Periodic Graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 73-82
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a6/
%G ru
%F TM_2024_324_a6
E. Vl. Bulinskaya. Propagation of Branching Random Walk on Periodic Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2024_324_a6/

[1] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. I. Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[2] Bai T., Rousselin P., “Branching random walks conditioned on particle numbers”, J. Stat. Phys., 185:3 (2021), 20 | DOI | MR | Zbl

[3] Biggins J.D., “The asymptotic shape of the branching random walk”, Adv. Appl. Probab., 10:1 (1978), 62–84 | DOI | MR | Zbl

[4] Biggins J.D., “How fast does a general branching random walk spread?”, Classical and modern branching processes: Proc. IMA Workshop (Minneapolis, 1994), IMA Vol. Math. Appl., 84, ed. by K.B. Athreya, P. Jagers, Springer, New York, 1997, 19–39 | DOI | MR | Zbl

[5] S. S. Bocharov, “Fluctuations of the rightmost particle in the catalytic branching Brownian motion”, Proc. Steklov Inst. Math., 316 (2022), 72–96 | DOI | DOI | MR | Zbl

[6] Brunet É., Le A.D., Mueller A.H., Munier S., “How to generate the tip of branching random walks evolved to large times”, Europhys. Lett., 131:4 (2020), 40002 | DOI

[7] Bulinskaya E.Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[8] E. Vl. Bulinskaya, “Maximum of a catalytic branching random walk”, Russ. Math. Surv., 74:3 (2019), 546–548 | DOI | DOI | MR | Zbl

[9] E. Vl. Bulinskaya, “Fluctuations of the propagation front of a catalytic branching walk”, Theory Probab. Appl., 64:4 (2020), 513–534 | DOI | DOI | MR | Zbl

[10] Bulinskaya E.Vl., “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 34:1 (2021), 141–161 | DOI | MR | Zbl

[11] Bulinskaya E.Vl., “Catalytic branching random walk with semi-exponential increments”, Math. Popul. Stud., 28:3 (2021), 123–153 | DOI | MR | Zbl

[12] Carmona Ph., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 327–351 | DOI | MR | Zbl

[13] Chernousova E., Hryniv O., Molchanov S., “Branching random walk in a random time-independent environment”, Math. Popul. Stud., 30:2 (2023), 73–94 | DOI | MR | Zbl

[14] Cranston M., Koralov L., Molchanov S., Vainberg B., “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl

[15] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley and Sons, New York, 1971 | MR | MR | Zbl

[16] Y. Hu, V. A. Topchii, and V. A. Vatutin, “Branching random walk in $\mathbf Z^4$ with branching at the origin only”, Theory Probab. Appl., 56:2 (2012), 193–212 | DOI | DOI | MR | Zbl

[17] Liu R., “The spread speed of multiple catalytic branching random walks”, Acta math. appl. Sin. Engl. Ser., 39:2 (2023), 262–292 | DOI | MR | Zbl

[18] M. V. Platonova and K. S. Ryadovkin, “Branching random walks on $\mathbf Z^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl

[19] M. V. Platonova and K. S. Ryadovkin, “On the variance of the particle number of a supercritical branching random walk on periodic graphs”, J. Math. Sci., 258:6 (2021), 897–911 | DOI | MR | Zbl

[20] M. V. Platonova and K. S. Ryadovkin, “On asymptotic behavior of mean values of some functionals on branching random walk”, J. Math. Sci., 281:1 (2024), 127–141 | DOI | MR | Zbl

[21] Rytova A., Yarovaya E., “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. R. Soc. Edinburgh. Sect. A. Math., 151:3 (2021), 971–992 | DOI | MR | Zbl

[22] B. A. Sewastjanow, Verzweigungsprozesse, Akademie, Berlin, 1974 | MR | Zbl

[23] Shi Z., Branching random walks: École d'Été de Probabilités de Saint-Flour XLII – 2012, Lect. Notes Math., 2151, Springer, Cham, 2015 | DOI | MR

[24] Vatutin V.A., Topchi\u {ı} V.A., Yarovaya E.B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 69 (2004), 1–15 | DOI | MR