The Set of Basis Functions Generated by Pearson Type IV Distributions and Its Application to Problems of Statistical Data Analysis and Quantum Mechanics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 60-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using an example of Pearson type IV distributions, we propose a procedure of completing the classical probability distribution to a quantum state. We obtain a wave function corresponding to Pearson type IV distributions and construct the corresponding set of basis functions. Then we demonstrate how the developed method applies to problems of statistical data analysis and quantum mechanics, and show the efficiency of our approach for the problem of approximating statistical distributions with heavy tails.
Keywords: procedure for completing the classical probability distribution to a quantum state, Pearson type IV distributions, statistical distributions with heavy tails, sets of basis functions, position and momentum representations.
@article{TM_2024_324_a5,
     author = {Yu. I. Bogdanov and N. A. Bogdanova and V. F. Lukichev},
     title = {The {Set} of {Basis} {Functions} {Generated} by {Pearson} {Type} {IV} {Distributions} and {Its} {Application} to {Problems} of {Statistical} {Data} {Analysis} and {Quantum} {Mechanics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {60--72},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a5/}
}
TY  - JOUR
AU  - Yu. I. Bogdanov
AU  - N. A. Bogdanova
AU  - V. F. Lukichev
TI  - The Set of Basis Functions Generated by Pearson Type IV Distributions and Its Application to Problems of Statistical Data Analysis and Quantum Mechanics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 60
EP  - 72
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a5/
LA  - ru
ID  - TM_2024_324_a5
ER  - 
%0 Journal Article
%A Yu. I. Bogdanov
%A N. A. Bogdanova
%A V. F. Lukichev
%T The Set of Basis Functions Generated by Pearson Type IV Distributions and Its Application to Problems of Statistical Data Analysis and Quantum Mechanics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 60-72
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a5/
%G ru
%F TM_2024_324_a5
Yu. I. Bogdanov; N. A. Bogdanova; V. F. Lukichev. The Set of Basis Functions Generated by Pearson Type IV Distributions and Its Application to Problems of Statistical Data Analysis and Quantum Mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 60-72. http://geodesic.mathdoc.fr/item/TM_2024_324_a5/

[1] Yu. I. Bogdanov, “Fisher information and a nonparametric approximation of the distribution density”, Ind. Lab., 64:7 (1998), 472–477

[2] Bogdanov Yu.I., Statistical inverse problem, E-print, 2002, arXiv: physics/0211109 [physics.data-an] | DOI

[3] Yu. I. Bogdanov, “Fundamental notions of classical and quantum statistics: A root approach”, Opt. Spectrosc., 96:5 (2004), 668–678 | DOI

[4] Bogdanov Yu.I., “Metod maksimalnogo pravdopodobiya i kornevaya otsenka plotnosti raspredeleniya”, Zavodskaya laboratoriya. Diagnostika materialov, 70:3 (2004), 51–60

[5] Bogdanov Yu.I., “Quantum mechanical view of mathematical statistics”, New topics in quantum physics research, Nova Sci. Publ., New York, 2006, 1–36 ; arXiv: quant-ph/0303013 | MR | DOI

[6] Bogdanov Yu.I., “Quantum tomography of arbitrary spin states of particles: Root approach”, Proc. SPIE, 6264 (2006), 626403 (Quantum Informatics 2005) ; Statistical reconstruction of arbitrary spin states of particles: Root approach, E-print, 2005, arXiv: quant-ph/0509213 | DOI | DOI

[7] Bogdanov Yu.I., The sixth Hilbert's problem and the principles of quantum informatics, E-print, 2006, arXiv: quant-ph/0612025 | DOI

[8] Bogdanov Yu.I., “Modelirovanie kvantovykh sistem tomograficheskim metodom Monte-Karlo”, Kvantovaya elektronika, 37:12 (2007), 1091–1096

[9] Bogdanov Yu.I., Fiziko-statisticheskie osnovy kvantovoi informatiki: uchebnoe posobie, MIET, M., 2011

[10] Bogdanov Yu.I., Bogdanova N.A., “Root approach for estimation of statistical distributions”, Proc. SPIE, 9440 (2014), 94401K (Int. Conf. on Micro- and Nano-Electronics 2014) ; arXiv: 1412.2244 [quant-ph] | DOI | DOI

[11] Yu. I. Bogdanov, N. A. Bogdanova, D. V. Fastovets, and V. F. Lukichev, “Solution of the Schrödinger equation on a quantum computer by the Zalka–Wiesner method including quantum noise”, JETP Lett., 114:6 (2021), 354–361 | DOI | DOI

[12] N. Bohr, “Discussion with Einstein on epistemological problems in atomic physics”, Albert Einstein: Philosopher-Scientist, Library of Living Philosophers, 7, Library of Living Philosophers, Evanston, IL, 1949, 199–241

[13] S. Flügge, Practical Quantum Mechanics I, Springer, Berlin, 1971 | MR | Zbl

[14] A. S. Holevo, Statistical Structure of Quantum Theory, Springer Lect. Notes Phys., Springer, Berlin, 2001 | MR | Zbl

[15] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Quad. Sc. Norm. Super. Pisa, Monogr., 1, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl

[16] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[17] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, v. 1, Distribution Theory, Charles Griffin Co., London, 1969 | MR | Zbl

[18] Khinchin A.Ya., “Ob odnom priznake dlya kharakteristicheskikh funktsii”, Byull. MGU. Matematika i mekhanika, 1:5 (1937), 1–3 | Zbl

[19] L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Non-relativistic Theory, Pergamon Press, London, 1965 | MR | Zbl

[20] W. Pauli, General Principles of Quantum Mechanics, Springer, Berlin, 1980 | DOI | MR

[21] Pearson K., “Contributions to the mathematical theory of evolution. II: Skew variation in homogeneous material”, Philos. Trans. R. Soc. London A, 186 (1895), 343–414 | DOI

[22] Pearson K., Tables for statisticians and biometricians, Univ. Press, Cambridge, 1914

[23] W. P. Schleich, Quantum Optics in Phase Space, Wiley-VCH, Weinheim, 2001 | Zbl

[24] Schumaker B.L., “Noise in homodyne detection”, Opt. Lett., 9:5 (1984), 189–191 | DOI

[25] Tyrtyshnikov E.E., Matrichnyi analiz i lineinaya algebra, Fizmatlit, M., 2007

[26] Tyrtyshnikov E.E., Osnovy algebry, Fizmatlit, M., 2017

[27] Voevodin V.V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR

[28] Vogel K., Risken H., “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase”, Phys. Rev. A, 40:5 (1989), 2847–2849 | DOI

[29] Yuen H.P., Chan V.W.S., “Noise in homodyne and heterodyne detection”, Opt. Lett., 8:3 (1983), 177–179 | DOI