Continuity of Operator Functions in the Topology of Local Convergence in Measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a von Neumann algebra $\mathcal M$ of operators act on a Hilbert space $\mathcal {H}$, and let $\tau $ be a faithful normal semifinite trace on $\mathcal M$. Let $t_{\tau \textup {l}}$ be the topology of $\tau $-local convergence in measure on the *-algebra $S(\mathcal M,\tau )$ of all $\tau $-measurable operators. We prove the $t_{\tau \textup {l}}$-continuity of the involution on the set of all normal operators in $S(\mathcal M,\tau )$, investigate the $t_{\tau \textup {l}}$-continuity of operator functions on $S(\mathcal M,\tau )$, and show that the map $A\mapsto |A|$ is $t_{\tau \textup {l}}$-continuous on the set of all partial isometries in $\mathcal M$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, local convergence in measure, continuity of operator functions.
@article{TM_2024_324_a4,
     author = {A. M. Bikchentaev and O. E. Tikhonov},
     title = {Continuity of {Operator} {Functions} in the {Topology} of {Local} {Convergence} in {Measure}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a4/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
AU  - O. E. Tikhonov
TI  - Continuity of Operator Functions in the Topology of Local Convergence in Measure
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 51
EP  - 59
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a4/
LA  - ru
ID  - TM_2024_324_a4
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%A O. E. Tikhonov
%T Continuity of Operator Functions in the Topology of Local Convergence in Measure
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 51-59
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a4/
%G ru
%F TM_2024_324_a4
A. M. Bikchentaev; O. E. Tikhonov. Continuity of Operator Functions in the Topology of Local Convergence in Measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 51-59. http://geodesic.mathdoc.fr/item/TM_2024_324_a4/

[1] Bikchentaev A.M., “The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra”, Lobachevskii J. Math., 14 (2004), 17–24 | MR | Zbl

[2] A. M. Bikchentaev, “Minimality of convergence in measure topologies on finite von Neumann algebras”, Math. Notes, 75:3 (2004), 315–321 | DOI | DOI | MR | Zbl

[3] A. M. Bikchentaev, “Local convergence in measure on semifinite von Neumann algebras”, Proc. Steklov Inst. Math., 255 (2006), 35–48 | DOI | MR | Zbl

[4] A. M. Bikchentaev, “Local convergence in measure on semifinite von Neumann algebras. II”, Math. Notes, 82:5–6 (2007), 703–707 | DOI | DOI | MR | Zbl

[5] Bikchentaev A., Sukochev F., “When weak and local measure convergence implies norm convergence”, J. Math. Anal. Appl., 473:2 (2019), 1414–1431 | DOI | MR | Zbl

[6] A. M. Bikchentaev, “Convergence in measure and $\tau $-compactness of $\tau $-measurable operators, affiliated with a semifinite von Neumann algebra”, Russ. Math., 64:5 (2020), 79–82 | DOI | DOI | MR | Zbl

[7] A. M. Bikchentaev, “The topologies of local convergence in measure on the algebras of measurable operators”, Sib. Math. J., 64:1 (2023), 13–21 | DOI | DOI | MR | MR | Zbl

[8] Ciach L.J., “Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra”, Colloq. math., 55:1 (1988), 109–121 | DOI | MR | Zbl

[9] Davies E.B., “A generalisation of Kaplansky's theorem”, J. London Math. Soc. Ser. 2, 4:3 (1972), 435–436 | DOI | MR | Zbl

[10] Dodds P.G., Dodds T.K.-Y., de Pagter B., “Noncommutative Köthe duality”, Trans. Am. Math. Soc., 339:2 (1993), 717–750 | DOI | MR | Zbl

[11] Dodds P.G., Dodds T.K., Sukochev F.A., Tikhonov O.Ye., “A non-commutative Yosida–Hewitt theorem and convex sets of measurable operators closed locally in measure”, Positivity, 9:3 (2005), 457–484 | DOI | MR | Zbl

[12] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau $-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[13] Kadison R.V., “Strong continuity of operator functions”, Pac. J. Math., 26:1 (1968), 121–129 | DOI | MR | Zbl

[14] M. A. Muratov and V. I. Chilin, “Topological algebras of measurable and locally measurable operators”, J. Math. Sci., 239:5 (2019), 654–705 | DOI | MR | Zbl

[15] G. Sh. Skvortsova, “Weak sequential completeness of factor spaces of the space of integrable operators”, Russ. Math., 46:9 (2002), 68–71 | MR | Zbl

[16] G. Sh. Skvortsova and O. E. Tikhonov, “Convex sets in noncommutative $L_1$-spaces, closed in the topology of local convergence in measure”, Russ. Math., 42:8 (1998), 46–52 | MR | Zbl

[17] Takesaki M., Theory of operator algebras. I, Encycl. Math. Sci., 124, Springer, Berlin, 2002 ; Operator Algebras and Non-commutative Geometry, 5 | MR | Zbl

[18] Takesaki M., Theory of operator algebras. II, Encycl. Math. Sci., 125, Springer, Berlin, 2003 ; Operator Algebras and Non-commutative Geometry, 6 | MR | Zbl

[19] O. E. Tikhonov, “Continuity of operator functions in topologies connected to a trace on a von Neumann algebra”, Sov. Math., 31:1 (1987), 110–114 | MR | Zbl

[20] O. E. Tikhonov, “On convergence of functions of normal operators in strong operator topology”, Funct. Anal. Appl., 41:3 (2007), 245–246 | DOI | DOI | MR | Zbl