On Local Continuity of Characteristics of Composite Quantum Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 238-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

General methods of local continuity analysis of characteristics of infinite-dimensional composite quantum systems are considered. A new approximation technique for obtaining local continuity conditions for various characteristics of quantum systems is proposed and described in detail. This technique is used to prove several general results (a Simon-type dominated convergence theorem, a theorem on the preservation of continuity under convex mixtures, etc.). Local continuity conditions are derived for the following characteristics of composite quantum systems: the quantum conditional entropy, the quantum (conditional) mutual information, the one-way classical correlation and its regularization, the quantum discord and its regularization, the entanglement of formation and its regularization, and the constrained Holevo capacity of a partial trace and its regularization.
Keywords: quantum state, von Neumann entropy, correlation measure, entanglement measure, locally almost affine function, quantum channel, quantum measurement.
@article{TM_2024_324_a19,
     author = {M. E. Shirokov},
     title = {On {Local} {Continuity} of {Characteristics} of {Composite} {Quantum} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {238--276},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a19/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On Local Continuity of Characteristics of Composite Quantum Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 238
EP  - 276
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a19/
LA  - ru
ID  - TM_2024_324_a19
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On Local Continuity of Characteristics of Composite Quantum Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 238-276
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a19/
%G ru
%F TM_2024_324_a19
M. E. Shirokov. On Local Continuity of Characteristics of Composite Quantum Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 238-276. http://geodesic.mathdoc.fr/item/TM_2024_324_a19/

[1] Alicki R., Fannes M., “Continuity of quantum conditional information”, J. Phys. A: Math. Gen., 37:5 (2004), L55–L57 | DOI | MR | Zbl

[2] Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K., “Mixed-state entanglement and quantum error correction”, Phys. Rev. A, 54:5 (1996), 3824–3851 | DOI | MR | Zbl

[3] Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V., “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem”, IEEE Trans. Inf. Theory, 48:10 (2002), 2637–2655 | DOI | MR | Zbl

[4] Devetak I., Winter A., “Distilling common randomness from bipartite quantum states”, IEEE Trans. Inf. Theory, 50:12 (2004), 3183–3196 | DOI | MR | Zbl

[5] Devetak I., Yard J., “Exact cost of redistributing multipartite quantum states”, Phys. Rev. Lett., 100:23 (2008), 230501 | DOI | MR

[6] Donald M.J., Horodecki M., Rudolph O., “The uniqueness theorem for entanglement measures”, J. Math. Phys., 43:9 (2002), 4252–4272 | DOI | MR | Zbl

[7] Eisert J., Simon C., Plenio M.B., “On the quantification of entanglement in infinite-dimensional quantum systems”, J. Phys. A: Math. Gen., 35:17 (2002), 3911–3923 | DOI | MR | Zbl

[8] Ghourchian H., Gohari A., Amini A., “Existence and continuity of differential entropy for a class of distributions”, IEEE Commun. Lett., 21:7 (2017), 1469–1472 | DOI

[9] Hastings M.B., “Superadditivity of communication capacity using entangled inputs”, Nature Phys., 5:4 (2009), 255–257 | DOI

[10] Hayden P.M., Horodecki M., Terhal B.M., “The asymptotic entanglement cost of preparing a quantum state”, J. Phys. A: Math. Gen., 34:35 (2001), 6891–6898 | DOI | MR | Zbl

[11] Henderson L., Vedral V., “Classical, quantum and total correlations”, J. Phys. A: Math. Gen., 34:35 (2001), 6899–6905 | DOI | MR | Zbl

[12] Herbut F., “On mutual information in multipartite quantum states and equality in strong subadditivity of entropy”, J. Phys. A: Math. Gen., 37:10 (2004), 3535–3542 | DOI | MR | Zbl

[13] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel”, Probl. Inf. Transm., 9:3 (1973), 177–183 | MR | Zbl

[14] A. S. Holevo, “Entanglement-assisted capacities of constrained quantum channels”, Theory Probab. Appl., 48:2 (2004), 243–255 | DOI | DOI | MR | Zbl

[15] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[16] Horodecki R., Horodecki P., Horodecki M., Horodecki K., “Quantum entanglement”, Rev. Mod. Phys., 81:2 (2009), 865–942 | DOI | MR | Zbl

[17] Khatri S., Wilde M.M., Principles of quantum communication theory: A modern approach, E-print, 2020, arXiv: 2011.04672 [quant-ph] | DOI | MR

[18] Koashi M., Winter A., “Monogamy of quantum entanglement and other correlations”, Phys. Rev. A, 69:2 (2004), 022309 | DOI | MR

[19] A. A. Kuznetsova, “Conditional entropy for infinite-dimensional quantum systems”, Theory Probab. Appl., 55:4 (2011), 709–717 | DOI | DOI | MR | Zbl

[20] Lami L., Shirokov M.E., “Attainability and lower semi-continuity of the relative entropy of entanglement and variations on the theme”, Ann. Henri Poincaré, 24:12 (2023), 4069–4137 | DOI | MR | Zbl

[21] Lami L., Shirokov M., “Continuity of the relative entropy of resource”, Int. J. Quantum Inf., 2024, 2440009 ; arXiv: 2308.00696 [quant-ph] | DOI | DOI | Zbl

[22] Li N., Luo S., “Classical and quantum correlative capacities of quantum systems”, Phys. Rev. A, 84:4 (2011), 042124 | DOI

[23] Lieb E.H., Ruskai M.B., “Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys., 14:12 (1973), 1938–1941 | DOI | MR

[24] Lindblad G., “Entropy, information and quantum measurements”, Commun. Math. Phys., 33:4 (1973), 305–322 | DOI | MR

[25] Lindblad G., “Expectations and entropy inequalities for finite quantum systems”, Commun. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[26] Mirsky L., “Symmetric gauge functions and unitarily invariant norms”, Q. J. Math. Oxford, 11 (1960), 50–59 | DOI | MR | Zbl

[27] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[28] Ollivier H., Zurek W.H., “Quantum discord: A measure of the quantumness of correlations”, Phys. Rev. Lett., 88:1 (2002), 017901 | DOI | Zbl

[29] Piani M., “Problem with geometric discord”, Phys. Rev. A, 86:3 (2012), 034101 | DOI

[30] Plenio M.B., Virmani S., “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1–2 (2007), 1–51 | DOI | MR | Zbl

[31] Reed M., Simon B., Methods of modern mathematical physics, v. 1, Functional analysis, Academic Press, New York, 1980 | MR | Zbl

[32] Shirokov M.E., “The Holevo capacity of infinite dimensional channels and the additivity problem”, Commun. Math. Phys., 262:1 (2006), 137–159 | DOI | MR | Zbl

[33] M. E. Shirokov, “Entropy characteristics of subsets of states. I”, Izv. Math., 70:6 (2006), 1265–1292 | DOI | DOI | MR | Zbl

[34] Shirokov M.E., “Continuity of the von Neumann entropy”, Commun. Math. Phys., 296:3 (2010), 625–654 | DOI | MR | Zbl

[35] M. E. Shirokov, “On properties of the space of quantum states and their application to the construction of entanglement monotones”, Izv. Math., 74:4 (2010), 849–882 | DOI | DOI | MR | Zbl

[36] M. E. Shirokov, “Measures of correlations in infinite-dimensional quantum systems”, Sb. Math., 207:5 (2016), 724–768 | DOI | DOI | MR | Zbl

[37] Shirokov M.E., “Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use”, Quantum Inf. Process., 19:5 (2020), 164 | DOI | MR | Zbl

[38] M. E. Shirokov, “On lower semicontinuity of the quantum conditional mutual information and its corollaries”, Proc. Steklov Inst. Math., 313 (2021), 203–227 | DOI | DOI | MR | Zbl

[39] Shirokov M.E., “Correlation measures of a quantum state and information characteristics of a quantum channel”, J. Math. Phys., 64:11 (2023), 112201 | DOI | MR | Zbl

[40] Shirokov M.E., “Quantifying continuity of characteristics of composite quantum systems”, Phys. scr., 98:4 (2023), 042002 | DOI | MR

[41] Shor P.W., “Equivalence of additivity questions in quantum information theory”, Commun. Math. Phys., 246:3 (2004), 453–472 | DOI | MR | Zbl

[42] Streltsov A., Quantum correlations beyond entanglement and their role in quantum information theory, SpringerBriefs Phys., Springer, Cham, 2015 | DOI | MR | Zbl

[43] Streltsov A., Kampermann H., Bruß D., “Linking quantum discord to entanglement in a measurement”, Phys. Rev. Lett., 106:16 (2011), 160401 | DOI

[44] Wehrl A., “General properties of entropy”, Rev. Mod. Phys., 50:2 (1978), 221–260 | DOI | MR

[45] Wilde M.M., Quantum information theory, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[46] Wilde M.M., “Multipartite quantum correlations and local recoverability”, Proc. R. Soc. A, 471:2177 (2015), 20140941 | DOI | MR | Zbl

[47] Winter A., “Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints”, Commun. Math. Phys., 347:1 (2016), 291–313 | DOI | MR | Zbl

[48] Xi Z., Lu X.-M., Wang X., Li Y., “Necessary and sufficient condition for saturating the upper bound of quantum discord”, Phys. Rev. A, 85:3 (2012), 032109 | DOI

[49] Yang D., Horodecki K., Horodecki M., Horodecki P., Oppenheim J., Song W., “Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof”, IEEE Trans. Inf. Theory, 55:7 (2009), 3375–3387 | DOI | MR | Zbl