Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a18, author = {Jan Hamhalter and Ekaterina A. Turilova}, title = {Violation of {Bell's} {Inequalities} in {Jordan} {Triples} and {Jordan} {Algebras}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {225--237}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a18/} }
TY - JOUR AU - Jan Hamhalter AU - Ekaterina A. Turilova TI - Violation of Bell's Inequalities in Jordan Triples and Jordan Algebras JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 225 EP - 237 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2024_324_a18/ LA - ru ID - TM_2024_324_a18 ER -
%0 Journal Article %A Jan Hamhalter %A Ekaterina A. Turilova %T Violation of Bell's Inequalities in Jordan Triples and Jordan Algebras %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 225-237 %V 324 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2024_324_a18/ %G ru %F TM_2024_324_a18
Jan Hamhalter; Ekaterina A. Turilova. Violation of Bell's Inequalities in Jordan Triples and Jordan Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 225-237. http://geodesic.mathdoc.fr/item/TM_2024_324_a18/
[1] Aspect A., “Experimental tests of Bell's inequalities in atomic physics”, Atomic physics 8, ed. by L. Lindgren, A. Rosén, S. Svanberg, Plenum Press, New York, 1983, 103–128 | DOI | MR
[2] Bell J.S., “On the Einstein Podolsky Rosen paradox”, Physics, 1:3 (1964), 195–200 | DOI | MR
[3] Bohata M., Hamhalter J., “Maximal violation of Bell's inequalities and Pauli spin matrices”, J. Math. Phys., 50:8 (2009), 082101 | DOI | MR | Zbl
[4] Bohata M., Hamhalter J., “Bell's correlations and spin systems”, Found. Phys., 40:8 (2010), 1065–1075 | DOI | MR | Zbl
[5] Bohm D., Quantum theory, Prentice Hall, Englewood Cliffs, NJ, 1951
[6] Cabrera García M., Rodríguez Palacois Á., Non-associative normed algebras, v. 2, Encycl. Math. Appl., 167, Representation theory and the Zel'manov approach, Cambridge Univ. Press, Cambridge, 2018 | DOI | MR | Zbl
[7] Chu C.-H., Jordan structures in geometry and analysis, Cambridge Tracts Math., 190, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR | Zbl
[8] Einstein A., Podolsky B., Rosen N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 | DOI | Zbl
[9] Emch G.G., Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, New York, 1972 | Zbl
[10] Emch G.G., Mathematical and conceptual foundations of 20th-century physics, North-Holland Math. Stud., 100, North-Holland, Amsterdam, 1984 | MR | Zbl
[11] Friedmann Ya., Physical applications of homogeneous balls, Prog. Math. Phys., 40, Birkhäuser, Boston, 2005 | DOI | MR
[12] Friedman Ya., Russo B., “Structure of the predual of a $JBW^*$-triple”, J. reine angew. Math., 356 (1985), 67–89 | DOI | MR | Zbl
[13] Halvorson H., Clifton R., “Generic Bell correlation between arbitrary local algebras in quantum field theory”, J. Math. Phys., 41:4 (2000), 1711–1717 | DOI | MR | Zbl
[14] Hamhalter J., Kalenda O.F.K., Peralta A.M., “Finite tripotents and finite JBW$^*$ triples”, J. Math. Anal. Appl., 490:1 (2020), 124217 | DOI | MR | Zbl
[15] Hamhalter J., Kalenda O.F.K., Peralta A.M., Pfitzner H., “Measures of weak non-compactness in preduals of von Neumann algebras and JBW$^*$-triples”, J. Funct. Anal., 278:1 (2020), 108300 | DOI | MR | Zbl
[16] Hamhalter J., Sobotíková V., “Bell correlated and EPR states in the framework of Jordan algebras”, Found. Phys., 46:3 (2016), 330–349 | DOI | MR | Zbl
[17] Hanche-Olsen H., Størmer E., Jordan operator algebras, Pitman Adv. Publ. Program, Boston, 1984 | MR | Zbl
[18] A. S. Holevo, Statistical Structure of Quantum Theory, Lect. Notes Phys., Monogr., 67, Springer, Berlin, 2001 | DOI | MR | Zbl
[19] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, v. 1, 2, Grad. Stud. Math., 15, 16, Am. Math. Soc., Providence, RI, 1997 | MR | Zbl
[20] Kitajima Y., “EPR states and Bell correlated states in algebraic quantum field theory”, Found. Phys., 43:10 (2013), 1182–1192 | DOI | MR | Zbl
[21] Landau L.J., “Experimental tests of general quantum theories”, Lett. Math. Phys., 14:1 (1987), 33–40 | DOI | MR | Zbl
[22] Landsman K., Foundations of quantum theory: From classical concepts to operator algebras, Fundam. Theor. Phys., 188, Springer, Cham, 2017 | DOI | MR | Zbl
[23] Pisier G., “Grothendieck's theorem, past and present”, Bull. Am. Math. Soc., 49:2 (2012), 237–323 | DOI | MR | Zbl
[24] Pisier G., Tensor products of $C^*$-algebras and operator spaces. The Connes–Kirchberg problem, London Math. Soc. Stud. Texts, 96, Cambridge Univ. Press, Cambridge, 2020 | DOI | MR | Zbl
[25] Summers S.J., “On the independence of local algebras in quantum field theory”, Rev. Math. Phys., 2:2 (1990), 201–247 | DOI | MR | Zbl
[26] Summers S.J., “Bell's inequalities and algebraic structure”, Operator algebras and quantum field theory: Proc. Conf. (Roma, 1996), ed. by S. Doplicher et al., International Press, Cambridge, MA, 1997, 633–646 | MR
[27] Summers S.J., Werner R., “Bell's inequalities and quantum field theory. I: General setting”, J. Math. Phys., 28 (1987), 2440–2447 | DOI | MR | Zbl
[28] Summers S.J., Werner R., “Bell's inequalities and quantum field theory. II: Bell's inequalities are maximally violated in the vacuum”, J. Math. Phys., 28 (1987), 2448–2456 | DOI | MR | Zbl
[29] Summers S.J., Werner R., “Maximal violation of Bell's inequalities is generic in quantum field theory”, Commun. Math. Phys., 110:2 (1987), 247–259 | DOI | MR | Zbl
[30] Summers S.J., Werner R., “Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions”, Ann. Inst. Henri Poincaré. Phys. théor., 49:2 (1988), 215–243 | MR | Zbl
[31] Takesaki M., Theory of operator algebras I, Springer, New York, 1979 | MR | Zbl
[32] Topping D.M., Jordan algebras of self-adjoint operators, Mem. AMS, 53, Am. Math. Soc., Providence, RI, 1965 | DOI | MR | Zbl
[33] Upmeier H., Symmetric Banach manifolds and Jordan $C^*$-algebras, Nort-Holland Math. Stud., 104, ed. by L. Nachbin, Nort-Holland, Amsterdam, 1985 | MR | Zbl
[34] Werner R.F., EPR states for von Neumann algebras, E-print, 1999, arXiv: quant-ph/9910077 | DOI