Uncertainty Relations for Coherence Quantifiers of the Tsallis Type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 188-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

In quantum information theory, one needs to consider systems with incomplete information. To estimate a quantum system as an information resource, one uses various characteristics of non-classical correlations. Currently, much attention is paid to coherence quantifiers averaged over a set of specially selected states. In particular, mutually unbiased bases, symmetric informationally complete measurements, and some of their generalizations are of importance in this regard. The aim of the present study is to derive uncertainty relations for coherence quantifiers based on divergences of the Tsallis type. The obtained inequalities concern quantifiers averaged over a set of mutually unbiased bases and a set of states that form an equiangular tight frame.
Keywords: quantum coherence, index of coincidence, uncertainty principle, Tsallis entropy.
@article{TM_2024_324_a16,
     author = {A. E. Rastegin},
     title = {Uncertainty {Relations} for {Coherence} {Quantifiers} of the {Tsallis} {Type}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a16/}
}
TY  - JOUR
AU  - A. E. Rastegin
TI  - Uncertainty Relations for Coherence Quantifiers of the Tsallis Type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 188
EP  - 197
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a16/
LA  - ru
ID  - TM_2024_324_a16
ER  - 
%0 Journal Article
%A A. E. Rastegin
%T Uncertainty Relations for Coherence Quantifiers of the Tsallis Type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 188-197
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a16/
%G ru
%F TM_2024_324_a16
A. E. Rastegin. Uncertainty Relations for Coherence Quantifiers of the Tsallis Type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 188-197. http://geodesic.mathdoc.fr/item/TM_2024_324_a16/

[1] Amosov G., “On constructing informationally complete covariant positive operator-valued measures”, Entropy, 25:5 (2023), 783 | DOI | MR

[2] Baumgratz T., Cramer M., Plenio M.B., “Quantifying coherence”, Phys. Rev. Lett., 113:14 (2014), 140401 | DOI

[3] Bischof F., Kampermann H., Bruß D., “Resource theory of coherence based on positive-operator-valued measures”, Phys. Rev. Lett., 123:11 (2019), 110402 | DOI | MR

[4] Chen B., Fei S.-M., “Average coherence with respect to complementary measurements”, Commun. Theor. Phys., 73:1 (2021), 015103 | DOI | MR | Zbl

[5] Cheng S., Hall M.J.W., “Complementarity relations for quantum coherence”, Phys. Rev. A, 92:4 (2015), 042101 | DOI

[6] Coles P.J., Berta M., Tomamichel M., Wehner S., “Entropic uncertainty relations and their applications”, Rev. Mod. Phys., 89:1 (2017), 015002 | DOI | MR

[7] Ćwikliński P., Studziński M., Horodecki M., Oppenheim J., “Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics”, Phys. Rev. Lett., 115:21 (2015), 210403 | DOI

[8] Davies E.B., “Information and quantum measurement”, IEEE Trans. Inf. Theory, 24:5 (1978), 596–599 | DOI | MR | Zbl

[9] Deutsch D., “Uncertainty in quantum measurements”, Phys. Rev. Lett., 50:9 (1983), 631–633 | DOI | MR

[10] Durt T., Englert B.-G., Bengtsson I., Życzkowski K., “On mutually unbiased bases”, Int. J. Quantum Inf., 8:4 (2010), 535–640 | DOI | Zbl

[11] Flammia S., Exact SIC fiducial vectors http://www.physics.usyd.edu.au/~sflammia/SIC/

[12] Furuichi S., Yanagi K., Kuriyama K., “Fundamental properties of Tsallis relative entropy”, J. Math. Phys., 45:12 (2004), 4868–4877 | DOI | MR | Zbl

[13] Hertz A., Cerf N.J., “Continuous-variable entropic uncertainty relations”, J. Phys. A: Math. Theor., 52:17 (2019), 173001 | DOI | MR | Zbl

[14] Hillery M., “Coherence as a resource in decision problems: The Deutsch–Jozsa algorithm and a variation”, Phys. Rev. A, 93:1 (2016), 012111 | DOI | MR

[15] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel”, Probl. Inf. Transm., 9:3 (1973), 177–183 | MR | Zbl

[16] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl

[17] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[18] Hu M.-L., Hu X., Wang J., Peng Y., Zhang Y.-R., Fan H., “Quantum coherence and geometric quantum discord”, Phys. Rep., 762–764 (2018), 1–100 | DOI | MR | Zbl

[19] Ivanović I.D., “Geometrical description of quantal state determination”, J. Phys. A: Math. Gen., 14:12 (1981), 3241–3245 | DOI | MR

[20] Luo S., Sun Y., “Average versus maximal coherence”, Phys. Lett. A, 383:24 (2019), 2869–2873 | DOI | MR | Zbl

[21] Maassen H., Uffink J.B.M., “Generalized entropic uncertainty relations”, Phys. Rev. Lett., 60:12 (1988), 1103–1106 | DOI | MR

[22] Mao Y., Song H., “Quantumness of ensembles via coherence”, Phys. Lett. A, 383:23 (2019), 2698–2703 | DOI | MR | Zbl

[23] Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M., “On quantum Rényi entropies: A new generalization and some properties”, J. Math. Phys., 54:12 (2013), 122203 | DOI | MR | Zbl

[24] Narasimhachar V., Gour G., “Low-temperature thermodynamics with quantum coherence”, Nature Commun., 6 (2015), 7689 | DOI

[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed., Cambridge Univ. Press, Cambridge, 2010 | DOI | MR | Zbl

[26] Rastegin A.E., “Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies”, Eur. Phys. J. D, 67:12 (2013), 269 | DOI | MR

[27] Rastegin A.E., “Quantum-coherence quantifiers based on the Tsallis relative $\alpha $ entropies”, Phys. Rev. A, 93:3 (2016), 032136 | DOI | MR

[28] Rastegin A.E., “Coherence quantifiers from the viewpoint of their decreases in the measurement process”, J. Phys. A: Math. Theor., 51:41 (2018), 414011 | DOI | MR | Zbl

[29] Rastegin A.E., “Uncertainty relations for quantum coherence with respect to mutually unbiased bases”, Front. Phys., 13:1 (2018), 130304 | DOI | MR

[30] Rastegin A.E., “Uncertainty relations for coherence quantifiers based on the Tsallis relative $1/2$-entropies”, Phys. scr., 98:1 (2023), 015107 | DOI

[31] Rastegin A.E., “Entropic uncertainty relations from equiangular tight frames and their applications”, Proc. R. Soc. A, 479:2274 (2023), 20220546 | DOI | MR

[32] Rastegin A.E., Uncertainty relations in terms of generalized entropies derived from information diagrams, E-print, 2023, arXiv: 2305.18005 [quant-ph] | DOI | MR

[33] Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M., “Symmetric informationally complete quantum measurements”, J. Math. Phys., 45:6 (2004), 2171–2180 | DOI | MR | Zbl

[34] Robertson H.P., “The uncertainty principle”, Phys. Rev., 34:1 (1929), 163–164 | DOI

[35] Schlosshauer M., “Decoherence, the measurement problem, and interpretations of quantum mechanics”, Rev. Mod. Phys., 76:4 (2004), 1267–1305 ; Shvinger Yu., Kvantovaya kinematika i dinamika, Razd. 2.12, Nauka, M., 1992 | DOI | MR

[36] J. Schwinger, “Unitary operator bases”, Proc. Natl. Acad. Sci. USA, 46:4 (1960), 570–579 | DOI | MR | MR | Zbl

[37] Sentís G., Gendra B., Bartlett S.D., Doherty A.C., “Decomposition of any quantum measurement into extremals”, J. Phys. A: Math. Theor., 46:37 (2013), 375302 | DOI | MR | Zbl

[38] Shi H.-L., Liu S.-Y., Wang X.-H., Yang W.-L., Yang Z.-Y., Fan H., “Coherence depletion in the Grover quantum search algorithm”, Phys. Rev. A, 95:3 (2017), 032307 | DOI | MR

[39] M. E. Shirokov, “Convergence criterion for quantum relative entropy and its use”, Sb. Math., 213:12 (2022), 1740–1772 | DOI | DOI | MR

[40] Streltsov A., Adesso G., Plenio M.B., “Colloquium: Quantum coherence as a resource”, Rev. Mod. Phys., 89:4 (2017), 041003 | DOI | MR

[41] I. V. Volovich and A. S. Trushechkin, “Squeezed quantum states on an interval and uncertainty relations for nanoscale systems”, Proc. Steklov Inst. Math., 265 (2009), 276–306 | DOI | MR | Zbl

[42] Wang D., Ming F., Hu M.-L., Ye L., “Quantum-memory-assisted entropic uncertainty relations”, Ann. Phys., 531:10 (2019), 1900124 | DOI | MR

[43] Wu S., Yu S., Mølmer K., “Entropic uncertainty relation for mutually unbiased bases”, Phys. Rev. A, 79:2 (2009), 022104 | DOI | MR

[44] Yu C., “Quantum coherence via skew information and its polygamy”, Phys. Rev. A, 95:4 (2017), 042337 | DOI

[45] Yuan X., Bai G., Peng T., Ma X., “Quantum uncertainty relation using coherence”, Phys. Rev. A, 96:3 (2017), 032313 | DOI | MR

[46] Zauner G., “Quantum designs: Foundations of a noncommutative design theory”, Int. J. Quantum Inf., 9:1 (2011), 445–507 | DOI | MR | Zbl

[47] Zurek W.H., “Decoherence, einselection, and the quantum origins of the classical”, Rev. Mod. Phys., 75:3 (2003), 715–775 | DOI | MR | Zbl