Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a16, author = {A. E. Rastegin}, title = {Uncertainty {Relations} for {Coherence} {Quantifiers} of the {Tsallis} {Type}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {188--197}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a16/} }
A. E. Rastegin. Uncertainty Relations for Coherence Quantifiers of the Tsallis Type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 188-197. http://geodesic.mathdoc.fr/item/TM_2024_324_a16/
[1] Amosov G., “On constructing informationally complete covariant positive operator-valued measures”, Entropy, 25:5 (2023), 783 | DOI | MR
[2] Baumgratz T., Cramer M., Plenio M.B., “Quantifying coherence”, Phys. Rev. Lett., 113:14 (2014), 140401 | DOI
[3] Bischof F., Kampermann H., Bruß D., “Resource theory of coherence based on positive-operator-valued measures”, Phys. Rev. Lett., 123:11 (2019), 110402 | DOI | MR
[4] Chen B., Fei S.-M., “Average coherence with respect to complementary measurements”, Commun. Theor. Phys., 73:1 (2021), 015103 | DOI | MR | Zbl
[5] Cheng S., Hall M.J.W., “Complementarity relations for quantum coherence”, Phys. Rev. A, 92:4 (2015), 042101 | DOI
[6] Coles P.J., Berta M., Tomamichel M., Wehner S., “Entropic uncertainty relations and their applications”, Rev. Mod. Phys., 89:1 (2017), 015002 | DOI | MR
[7] Ćwikliński P., Studziński M., Horodecki M., Oppenheim J., “Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics”, Phys. Rev. Lett., 115:21 (2015), 210403 | DOI
[8] Davies E.B., “Information and quantum measurement”, IEEE Trans. Inf. Theory, 24:5 (1978), 596–599 | DOI | MR | Zbl
[9] Deutsch D., “Uncertainty in quantum measurements”, Phys. Rev. Lett., 50:9 (1983), 631–633 | DOI | MR
[10] Durt T., Englert B.-G., Bengtsson I., Życzkowski K., “On mutually unbiased bases”, Int. J. Quantum Inf., 8:4 (2010), 535–640 | DOI | Zbl
[11] Flammia S., Exact SIC fiducial vectors http://www.physics.usyd.edu.au/~sflammia/SIC/
[12] Furuichi S., Yanagi K., Kuriyama K., “Fundamental properties of Tsallis relative entropy”, J. Math. Phys., 45:12 (2004), 4868–4877 | DOI | MR | Zbl
[13] Hertz A., Cerf N.J., “Continuous-variable entropic uncertainty relations”, J. Phys. A: Math. Theor., 52:17 (2019), 173001 | DOI | MR | Zbl
[14] Hillery M., “Coherence as a resource in decision problems: The Deutsch–Jozsa algorithm and a variation”, Phys. Rev. A, 93:1 (2016), 012111 | DOI | MR
[15] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel”, Probl. Inf. Transm., 9:3 (1973), 177–183 | MR | Zbl
[16] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl
[17] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl
[18] Hu M.-L., Hu X., Wang J., Peng Y., Zhang Y.-R., Fan H., “Quantum coherence and geometric quantum discord”, Phys. Rep., 762–764 (2018), 1–100 | DOI | MR | Zbl
[19] Ivanović I.D., “Geometrical description of quantal state determination”, J. Phys. A: Math. Gen., 14:12 (1981), 3241–3245 | DOI | MR
[20] Luo S., Sun Y., “Average versus maximal coherence”, Phys. Lett. A, 383:24 (2019), 2869–2873 | DOI | MR | Zbl
[21] Maassen H., Uffink J.B.M., “Generalized entropic uncertainty relations”, Phys. Rev. Lett., 60:12 (1988), 1103–1106 | DOI | MR
[22] Mao Y., Song H., “Quantumness of ensembles via coherence”, Phys. Lett. A, 383:23 (2019), 2698–2703 | DOI | MR | Zbl
[23] Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M., “On quantum Rényi entropies: A new generalization and some properties”, J. Math. Phys., 54:12 (2013), 122203 | DOI | MR | Zbl
[24] Narasimhachar V., Gour G., “Low-temperature thermodynamics with quantum coherence”, Nature Commun., 6 (2015), 7689 | DOI
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed., Cambridge Univ. Press, Cambridge, 2010 | DOI | MR | Zbl
[26] Rastegin A.E., “Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies”, Eur. Phys. J. D, 67:12 (2013), 269 | DOI | MR
[27] Rastegin A.E., “Quantum-coherence quantifiers based on the Tsallis relative $\alpha $ entropies”, Phys. Rev. A, 93:3 (2016), 032136 | DOI | MR
[28] Rastegin A.E., “Coherence quantifiers from the viewpoint of their decreases in the measurement process”, J. Phys. A: Math. Theor., 51:41 (2018), 414011 | DOI | MR | Zbl
[29] Rastegin A.E., “Uncertainty relations for quantum coherence with respect to mutually unbiased bases”, Front. Phys., 13:1 (2018), 130304 | DOI | MR
[30] Rastegin A.E., “Uncertainty relations for coherence quantifiers based on the Tsallis relative $1/2$-entropies”, Phys. scr., 98:1 (2023), 015107 | DOI
[31] Rastegin A.E., “Entropic uncertainty relations from equiangular tight frames and their applications”, Proc. R. Soc. A, 479:2274 (2023), 20220546 | DOI | MR
[32] Rastegin A.E., Uncertainty relations in terms of generalized entropies derived from information diagrams, E-print, 2023, arXiv: 2305.18005 [quant-ph] | DOI | MR
[33] Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M., “Symmetric informationally complete quantum measurements”, J. Math. Phys., 45:6 (2004), 2171–2180 | DOI | MR | Zbl
[34] Robertson H.P., “The uncertainty principle”, Phys. Rev., 34:1 (1929), 163–164 | DOI
[35] Schlosshauer M., “Decoherence, the measurement problem, and interpretations of quantum mechanics”, Rev. Mod. Phys., 76:4 (2004), 1267–1305 ; Shvinger Yu., Kvantovaya kinematika i dinamika, Razd. 2.12, Nauka, M., 1992 | DOI | MR
[36] J. Schwinger, “Unitary operator bases”, Proc. Natl. Acad. Sci. USA, 46:4 (1960), 570–579 | DOI | MR | MR | Zbl
[37] Sentís G., Gendra B., Bartlett S.D., Doherty A.C., “Decomposition of any quantum measurement into extremals”, J. Phys. A: Math. Theor., 46:37 (2013), 375302 | DOI | MR | Zbl
[38] Shi H.-L., Liu S.-Y., Wang X.-H., Yang W.-L., Yang Z.-Y., Fan H., “Coherence depletion in the Grover quantum search algorithm”, Phys. Rev. A, 95:3 (2017), 032307 | DOI | MR
[39] M. E. Shirokov, “Convergence criterion for quantum relative entropy and its use”, Sb. Math., 213:12 (2022), 1740–1772 | DOI | DOI | MR
[40] Streltsov A., Adesso G., Plenio M.B., “Colloquium: Quantum coherence as a resource”, Rev. Mod. Phys., 89:4 (2017), 041003 | DOI | MR
[41] I. V. Volovich and A. S. Trushechkin, “Squeezed quantum states on an interval and uncertainty relations for nanoscale systems”, Proc. Steklov Inst. Math., 265 (2009), 276–306 | DOI | MR | Zbl
[42] Wang D., Ming F., Hu M.-L., Ye L., “Quantum-memory-assisted entropic uncertainty relations”, Ann. Phys., 531:10 (2019), 1900124 | DOI | MR
[43] Wu S., Yu S., Mølmer K., “Entropic uncertainty relation for mutually unbiased bases”, Phys. Rev. A, 79:2 (2009), 022104 | DOI | MR
[44] Yu C., “Quantum coherence via skew information and its polygamy”, Phys. Rev. A, 95:4 (2017), 042337 | DOI
[45] Yuan X., Bai G., Peng T., Ma X., “Quantum uncertainty relation using coherence”, Phys. Rev. A, 96:3 (2017), 032313 | DOI | MR
[46] Zauner G., “Quantum designs: Foundations of a noncommutative design theory”, Int. J. Quantum Inf., 9:1 (2011), 445–507 | DOI | MR | Zbl
[47] Zurek W.H., “Decoherence, einselection, and the quantum origins of the classical”, Rev. Mod. Phys., 75:3 (2003), 715–775 | DOI | MR | Zbl