Metric on the Space of Quantum Processes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a metric $D$ describing the difference between real (noisy) and ideal processes that is based on the operator norm of the maximum deviation between the final real and ideal states of a quantum system. We discuss the properties as well as geometric and experimental interpretations of the metric.
Keywords: decoherence, quantum channels, decoherence metric, operator norm, noise level estimation.
@article{TM_2024_324_a15,
     author = {E. A. Pankovets and L. E. Fedichkin},
     title = {Metric on the {Space} of {Quantum} {Processes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {179--187},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a15/}
}
TY  - JOUR
AU  - E. A. Pankovets
AU  - L. E. Fedichkin
TI  - Metric on the Space of Quantum Processes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 179
EP  - 187
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a15/
LA  - ru
ID  - TM_2024_324_a15
ER  - 
%0 Journal Article
%A E. A. Pankovets
%A L. E. Fedichkin
%T Metric on the Space of Quantum Processes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 179-187
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a15/
%G ru
%F TM_2024_324_a15
E. A. Pankovets; L. E. Fedichkin. Metric on the Space of Quantum Processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187. http://geodesic.mathdoc.fr/item/TM_2024_324_a15/

[1] Aharonov D., Ben-Or M., “Fault-tolerant quantum computation with constant error”, Proc. 29th Annu. ACM Symp. on Theory of Computing (El Paso, TX, USA, 1997), ACM, New York, 1999, 176–188 | MR | Zbl

[2] Chuang I.L., Nielsen M.A., “Prescription for experimental determination of the dynamics of a quantum black box”, J. Mod. Opt., 44:11–12 (1997), 2455–2467 | DOI

[3] Fedichkin L., Fedorov A., Privman V., “Measures of decoherence”, Quantum information and computation, Proc. SPIE, 5105, ed. by E. Donkor, A.R. Pirich, H.E. Brandt, SPIE, 2003, 243–254 | DOI

[4] Fedichkin L., Fedorov A., Privman V., “Additivity of decoherence measures for multiqubit quantum systems”, Phys. Lett. A, 328:2–3 (2004), 87–93 | DOI | MR | Zbl

[5] Fedichkin L.E., Kurkin A.A., “Some properties of maximal trace measure of quantum computer error rate”, Proc. SPIE, 12157 (2022), 121571X | DOI

[6] Fedichkin L., Privman V., “Quantitative evaluation of decoherence and applications for quantum-dot charge qubits”, HAIT J. Sci. Eng. A, 5:1–2 (2008), 112–139; arXiv: 0805.2370 [quant-ph] | DOI

[7] Fedichkin L., Privman V., “Quantitative treatment of decoherence”, Electron spin resonance and related phenomena in low-dimensional structures, Top. Appl. Phys., 115, Springer, Berlin, 2009, 141–167 | DOI

[8] Fedorov A., Fedichkin L., Privman V., “Evaluation of decoherence for quantum control and computing”, J. Comput. Theor. Nanosci., 1:2 (2004), 132–143 | DOI | MR

[9] Gilchrist A., Langford N.K., Nielsen M.A., “Distance measures to compare real and ideal quantum processes”, Phys. Rev. A, 71:6 (2005), 062310 | DOI

[10] Hofmann H.F., “Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations”, Phys. Rev. Lett., 94:16 (2005), 160504 | DOI | MR

[11] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 ; Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[12] T. Kato, Perturbation Theory for Linear Operators, Grundl. Math. Wiss., 132, Springer, Berlin, 2013 | MR

[13] A. Yu. Kitaev, “Quantum computations: Algorithms and error correction”, Russ. Math. Surv., 52:6 (1997), 1191–1249 | DOI | DOI | MR | Zbl

[14] Landau L., “Das Dämpfungsproblem in der Wellenmechanik”, Z. Phys., 45:5–6 (1927), 430–441 | DOI

[15] Leonhardt U., “Discrete Wigner function and quantum-state tomography”, Phys. Rev. A, 53:5 (1996), 2998–3013 | DOI | MR

[16] Lloyd S., DiVincenzo D., Vazirani U., Doolen G., Whaley B., Theory component of the quantum information processing and quantum computing roadmap: A quantum information science and technology roadmap. Part 1: Quantum computation. Sect. 6.9, Tech. Rep. LA-UR-04-1777, LANL, Los Alamos, 2004 | Zbl

[17] Maciejewski F.B., Puchała Z., Oszmaniec M., “Operational quantum average-case distances”, Quantum, 7 (2023), 1106 ; arXiv: 2112.14283 [quant-ph] | DOI | MR | DOI

[18] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[19] Osán T.M., Lamberti P.W., “Purification-based metric to measure the distance between quantum states and processes”, Phys. Rev. A, 87:6 (2013), 062319 | DOI