Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a15, author = {E. A. Pankovets and L. E. Fedichkin}, title = {Metric on the {Space} of {Quantum} {Processes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {179--187}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a15/} }
E. A. Pankovets; L. E. Fedichkin. Metric on the Space of Quantum Processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187. http://geodesic.mathdoc.fr/item/TM_2024_324_a15/
[1] Aharonov D., Ben-Or M., “Fault-tolerant quantum computation with constant error”, Proc. 29th Annu. ACM Symp. on Theory of Computing (El Paso, TX, USA, 1997), ACM, New York, 1999, 176–188 | MR | Zbl
[2] Chuang I.L., Nielsen M.A., “Prescription for experimental determination of the dynamics of a quantum black box”, J. Mod. Opt., 44:11–12 (1997), 2455–2467 | DOI
[3] Fedichkin L., Fedorov A., Privman V., “Measures of decoherence”, Quantum information and computation, Proc. SPIE, 5105, ed. by E. Donkor, A.R. Pirich, H.E. Brandt, SPIE, 2003, 243–254 | DOI
[4] Fedichkin L., Fedorov A., Privman V., “Additivity of decoherence measures for multiqubit quantum systems”, Phys. Lett. A, 328:2–3 (2004), 87–93 | DOI | MR | Zbl
[5] Fedichkin L.E., Kurkin A.A., “Some properties of maximal trace measure of quantum computer error rate”, Proc. SPIE, 12157 (2022), 121571X | DOI
[6] Fedichkin L., Privman V., “Quantitative evaluation of decoherence and applications for quantum-dot charge qubits”, HAIT J. Sci. Eng. A, 5:1–2 (2008), 112–139; arXiv: 0805.2370 [quant-ph] | DOI
[7] Fedichkin L., Privman V., “Quantitative treatment of decoherence”, Electron spin resonance and related phenomena in low-dimensional structures, Top. Appl. Phys., 115, Springer, Berlin, 2009, 141–167 | DOI
[8] Fedorov A., Fedichkin L., Privman V., “Evaluation of decoherence for quantum control and computing”, J. Comput. Theor. Nanosci., 1:2 (2004), 132–143 | DOI | MR
[9] Gilchrist A., Langford N.K., Nielsen M.A., “Distance measures to compare real and ideal quantum processes”, Phys. Rev. A, 71:6 (2005), 062310 | DOI
[10] Hofmann H.F., “Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations”, Phys. Rev. Lett., 94:16 (2005), 160504 | DOI | MR
[11] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 ; Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[12] T. Kato, Perturbation Theory for Linear Operators, Grundl. Math. Wiss., 132, Springer, Berlin, 2013 | MR
[13] A. Yu. Kitaev, “Quantum computations: Algorithms and error correction”, Russ. Math. Surv., 52:6 (1997), 1191–1249 | DOI | DOI | MR | Zbl
[14] Landau L., “Das Dämpfungsproblem in der Wellenmechanik”, Z. Phys., 45:5–6 (1927), 430–441 | DOI
[15] Leonhardt U., “Discrete Wigner function and quantum-state tomography”, Phys. Rev. A, 53:5 (1996), 2998–3013 | DOI | MR
[16] Lloyd S., DiVincenzo D., Vazirani U., Doolen G., Whaley B., Theory component of the quantum information processing and quantum computing roadmap: A quantum information science and technology roadmap. Part 1: Quantum computation. Sect. 6.9, Tech. Rep. LA-UR-04-1777, LANL, Los Alamos, 2004 | Zbl
[17] Maciejewski F.B., Puchała Z., Oszmaniec M., “Operational quantum average-case distances”, Quantum, 7 (2023), 1106 ; arXiv: 2112.14283 [quant-ph] | DOI | MR | DOI
[18] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[19] Osán T.M., Lamberti P.W., “Purification-based metric to measure the distance between quantum states and processes”, Phys. Rev. A, 87:6 (2013), 062319 | DOI