Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a14, author = {Oleg V. Morzhin and Alexander N. Pechen}, title = {Using and {Optimizing} {Time-Dependent} {Decoherence} {Rates} and {Coherent} {Control} for a {Qutrit} {System}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {162--178}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a14/} }
TY - JOUR AU - Oleg V. Morzhin AU - Alexander N. Pechen TI - Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 162 EP - 178 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2024_324_a14/ LA - ru ID - TM_2024_324_a14 ER -
%0 Journal Article %A Oleg V. Morzhin %A Alexander N. Pechen %T Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 162-178 %V 324 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2024_324_a14/ %G ru %F TM_2024_324_a14
Oleg V. Morzhin; Alexander N. Pechen. Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 162-178. http://geodesic.mathdoc.fr/item/TM_2024_324_a14/
[1] Accardi L., Kozyrev S.V., Pechen A.N., “Coherent quantum control of $\Lambda $-atoms through the stochastic limit”, Quantum information and computing: Int. Conf. on Quantum Information (Tokyo, 2003), QP–PQ: Quantum Probab. White Noise Anal., 19, ed. by L. Accardi, M. Ohya, N. Watanabe, World Scientific, Hackensack, NJ, 2006, 1–17 | DOI | MR | Zbl
[2] B. R. Andrievsky and A. L. Fradkov, “Speed gradient method and its applications”, Autom. Remote Control, 82:9 (2021), 1463–1518 | DOI | DOI | MR | Zbl
[3] A. S. Antipin, “Minimization of convex functions on convex sets by means of differential equations”, Diff. Eqns., 30:9 (1994), 1365–1375 | MR | Zbl
[4] Araki T., Nori F., Gneiting C., “Robust quantum control with disorder-dressed evolution”, Phys. Rev. A, 107:3 (2023), 032609 | DOI | MR
[5] Boscain U., Sigalotti M., Sugny D., “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2:3 (2021), 030203 | DOI
[6] Brif C., Chakrabarti R., Rabitz H., “Control of quantum phenomena: Past, present and future”, New J. Phys., 12:7 (2010), 075008 | DOI | MR | Zbl
[7] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer, Dordrecht, 1990 | MR | Zbl
[8] Caneva T., Calarco T., Montangero S., “Chopped random-basis quantum optimization”, Phys. Rev. A, 84:2 (2011), 022326 | DOI
[9] D'Alessandro D., Introduction to quantum control and dynamics, 2nd ed., CRC Press, Boca Raton, FL, 2021 | DOI | MR | Zbl
[10] D'Alessandro D., Sheller B.A., Zhu Z., “Time-optimal control of quantum lambda systems in the KP configuration”, J. Math. Phys., 61:5 (2020), 052107 | DOI | MR | Zbl
[11] Dann R., Tobalina A., Kosloff R., “Fast route to equilibration”, Phys. Rev. A, 101:5 (2020), 052102 | DOI | MR
[12] V. F. Demyanov and A. M. Rubinov, Approximate Methods in Optimization Problems, Am. Elsevier Publ., New York, 1970 | MR | MR | Zbl
[13] Dong D., Petersen I.R., “Quantum control theory and applications: A survey”, IET Control Theory Appl., 4:12 (2010), 2651–2671 | DOI | MR
[14] Elovenkova M., Pechen A., “Control landscape of measurement-assisted transition probability for a three-level quantum system with dynamical symmetry”, Quantum Rep., 5:3 (2023), 526–545 | DOI
[15] Fernandes M.E.F., Fanchini F.F., de Lima E.F., Castelano L.K., “Effectiveness of the Krotov method in finding controls for open quantum systems”, J. Phys. A: Math. Theor., 56:49 (2023), 495303 | DOI | MR
[16] Goerz M.H., Reich D.M., Koch C.P., “Optimal control theory for a unitary operation under dissipative evolution”, New J. Phys., 16:5 (2014), 055012 ; arXiv: 1312.0111 [quant-ph] | DOI | MR | Zbl | DOI
[17] Goodwin D.L., Vinding M.S., “Accelerated Newton–Raphson GRAPE methods for optimal control”, Phys. Rev. Res., 5:1 (2023), L012042 | DOI
[18] Gough J., “Principles and applications of quantum control engineering”, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 370:1979 (2012), 5241–5258 | DOI | MR | Zbl
[19] J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. Math., 103:3 (2021), 122–126 | DOI | DOI | MR | Zbl
[20] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl
[21] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl
[22] Judson R.S., Rabitz H., “Teaching lasers to control molecules”, Phys. Rev. Lett., 68:10 (1992), 1500–1503 | DOI
[23] V. A. Kazakov and V. F. Krotov, “Optimal control of resonant interaction between light and matter”, Autom. Remote Control, 48:4 (1987), 430–434 | MR
[24] Khaneja N., Reiss T., Kehlet C., Schulte-Herbrüggen T., Glaser S.J., “Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305 | DOI
[25] Koch C.P., Boscain U., Calarco T., et al., “Quantum optimal control in quantum technologies: Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9 (2022), 19 | DOI
[26] V. V. Kozlov and O. G. Smolyanov, “Mathematical structures related to the description of quantum states”, Dokl. Math., 104:3 (2021), 365–368 | DOI | DOI | MR | Zbl
[27] Krotov V.F., Global methods in optimal control theory, M. Dekker, New York, 1996 | MR | Zbl
[28] V. F. Krotov and I. N. Feldman, “An iterative method for solving optimal control problems”, Eng. Cybern., 21:2 (1983), 123–130 | MR
[29] Kuprov I., Spin: From basic symmetries to quantum optimal control, Springer, Cham, 2023 | DOI | Zbl
[30] E. S. Levitin and B. T. Polyak, “Constrained minimization methods”, USSR Comput. Math. Math. Phys., 6:5 (1966), 1–50 | DOI | Zbl
[31] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54:39 (2021), 395304 | DOI | MR | Zbl
[32] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V., Rabitz H., “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI
[33] Mortensen H.L., Sørensen J.J.W.H., Mølmer K., Sherson J.F., “Fast state transfer in a $\Lambda $-system: A shortcut-to-adiabaticity approach to robust and resource optimized control”, New J. Phys., 20:2 (2018), 025009 | DOI
[34] Morzhin O.V., Pechen A.N., “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 | DOI | MR | Zbl
[35] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russ. Math. Surv., 74:5 (2019), 851–908 | DOI | DOI | MR | Zbl
[36] Morzhin O.V., Pechen A.N., “Optimal state manipulation for a two-qubit system driven by coherent and incoherent controls”, Quantum Inf. Process., 22:6 (2023), 241 | DOI | MR
[37] O. V. Morzhin and A. N. Pechen, “On optimization of coherent and incoherent controls for two-level quantum systems”, Izv. Math., 87:5 (2023), 1024–1050 | DOI | DOI | MR
[38] Morzhin O.V., Pechen A.N., “Krotov type optimization of coherent and incoherent controls for open two-qubit systems”, Izv. Irkutsk. gos. un-ta. Ser. mat., 45 (2023), 3–23 | DOI | MR
[39] Müller M.M., Said R.S., Jelezko F., Calarco T., Montangero S., “One decade of quantum optimal control in the chopped random basis”, Rep. Prog. Phys., 85:7 (2022), 076001 | DOI | MR
[40] A. Nedich, “Three-step method of gradient projection for minimization problems”, Russ. Math., 37:10 (1993), 30–36 | MR | Zbl
[41] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI | MR
[42] Pechen A.N., Borisenok S., Fradkov A.L., “Energy control in a quantum oscillator using coherent control and engineered environment”, Chaos Solitons Fractals, 164 (2022), 112687 | DOI | MR
[43] Pechen A., Rabitz H., “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI | MR
[44] Pechen A.N., Tannor D.J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI
[45] Pechen A.N., Tannor D.J., “Quantum control landscape for a $\Lambda $-atom in the vicinity of second-order traps”, Israel J. Chem., 52:5 (2012), 467–472 ; arXiv: 1508.04169 [quant-ph] | DOI | DOI
[46] Peirce A.P., Dahleh M.A., Rabitz H., “Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications”, Phys. Rev. A, 37:12 (1988), 4950–4964 | DOI | MR
[47] Petruhanov V.N., Pechen A.N., “GRAPE optimization for open quantum systems with time-dependent decoherence rates driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 56:30 (2023), 305303 | DOI | MR | Zbl
[48] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, New York, 1971 | MR
[49] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods”, USSR Comput. Math. Math. Phys., 4:5 (1964), 1–17 | DOI | MR
[50] B. T. Polyak, Introduction to Optimization, Optimization Softw. Inc., New York, 1987 | MR
[51] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl
[52] Schirmer S.G., de Fouquieres P., “Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered”, New J. Phys., 13:7 (2011), 073029 | DOI | Zbl
[53] Schulte-Herbrüggen T., Spörl A., Khaneja N., Glaser S.J., “Optimal control for generating quantum gates in open dissipative systems”, J. Phys. B, 44:15 (2011), 154013 | DOI
[54] Shao J., Naris M., Hauser J., Nicotra M.M., “Solving quantum optimal control problems using projection-operator-based Newton steps”, Phys. Rev. A, 109:1 (2024), 012609 | DOI | MR
[55] Srochko V.A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000
[56] Strang G., Linear algebra and learning from data, Wellesley-Cambridge Press, Wellesley, MA, 2019 | Zbl
[57] Sugny D., Kontz C., “Optimal control of a three-level quantum system by laser fields plus von Neumann measurements”, Phys. Rev. A, 77:6 (2008), 063420 | DOI | MR
[58] Sutskever I., Martens J., Dahl G., Hinton G., “On the importance of initialization and momentum in deep learning”, Proc. Mach. Learn. Res. (PMLR), 28:3 (2013), 1139–1147
[59] Tannor D.J., Introduction to quantum mechanics: A time dependent perspective, Univ. Sci. Books, Sausalito, CA, 2007
[60] Tannor D.J., Kazakov V., Orlov V., “Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds”, Time-dependent quantum molecular dynamics, Nato ASI Ser., 299, Springer, Boston, 1992, 347–360 | DOI
[61] TensorFlow: Machine learning platform. MomentumOptimizer, Accessed Aug. 5, 2023 https://www.tensorflow.org/api\textunderscore docs/python/tf/compat/v1/train/MomentumOptimizer
[62] Vacchini B., “Test particle in a quantum gas”, Phys. Rev. E, 63:6 (2001), 066115 | DOI
[63] Vacchini B., Hornberger K., “Quantum linear Boltzmann equation”, Phys. Rep., 478:4–6 (2009), 71–120 | DOI | MR
[64] F. P. Vasil'ev and A. Nedich, “On three-step regularized method of gradient projection for solving of minimization problems with inaccurate initial data”, Russ. Math., 37:12 (1993), 34–43 | MR | Zbl
[65] Wang Q.Q., Muller A., Cheng M.T., Zhou H.J., Bianucci P., Shih C.K., “Coherent control of a V-type three-level system in a single quantum dot”, Phys. Rev. Lett., 95:18 (2005), 187404 | DOI
[66] Wilde M.M., Quantum information theory, 2nd ed., Cambridge Univ. Press, Cambridge, 2017 | DOI | MR | Zbl
[67] Wu R., Pechen A., Brif C., Rabitz H., “Controllability of open quantum systems with Kraus-map dynamics”, J. Phys. A: Math. Theor., 40:21 (2007), 5681–5693 | DOI | MR | Zbl
[68] Zhang W., Saripalli R., Leamer J., Glasser R., Bondar D., “All-optical input-agnostic polarization transformer via experimental Kraus-map control”, Eur. Phys. J. Plus, 137:8 (2022), 930 | DOI
[69] V. E. Zobov and V. P. Shauro, “On time-optimal NMR control of states of qutrits represented by quadrupole nuclei with the spin $I=1$”, J. Exp. Theor. Phys., 113:2 (2011), 181–191 | DOI