Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 162-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an open qutrit system in which the evolution of the density matrix $\rho (t)$ is governed by the Gorini–Kossakowski–Sudarshan–Lindblad master equation with simultaneous coherent (in the Hamiltonian) and incoherent (in the dissipation superoperator) controls. To control the qutrit, we propose to use not only coherent control but also generally time-dependent decoherence rates which are adjusted by the so-called incoherent control. In our approach, the incoherent control makes the decoherence rates time-dependent in a specific controlled manner and within a clear physical mechanism. We consider the problem of maximizing the Hilbert–Schmidt overlap between the final state $\rho (T)$ of the system and a given target state $\rho _{\textup {target}}$, as well as the problem of minimizing the squared Hilbert–Schmidt distance between these states. For both problems, we perform their realifications, derive the corresponding Pontryagin functions, adjoint systems (with two variants of transversality conditions for the two terminal objectives), and gradients of the objectives, and adapt the one-, two-, and three-step gradient projection methods. For the problem of maximizing the overlap, we also adapt the regularized first-order Krotov method. In the numerical experiments, we analyze first the operation of the methods and second the obtained control processes, in respect of considering the environment as a resource via incoherent control.
Keywords: open quantum system, coherent control, incoherent control, gradient projection methods, Krotov method, numerical experiments.
@article{TM_2024_324_a14,
     author = {Oleg V. Morzhin and Alexander N. Pechen},
     title = {Using and {Optimizing} {Time-Dependent} {Decoherence} {Rates} and {Coherent} {Control} for a {Qutrit} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {162--178},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a14/}
}
TY  - JOUR
AU  - Oleg V. Morzhin
AU  - Alexander N. Pechen
TI  - Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 162
EP  - 178
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a14/
LA  - ru
ID  - TM_2024_324_a14
ER  - 
%0 Journal Article
%A Oleg V. Morzhin
%A Alexander N. Pechen
%T Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 162-178
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a14/
%G ru
%F TM_2024_324_a14
Oleg V. Morzhin; Alexander N. Pechen. Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 162-178. http://geodesic.mathdoc.fr/item/TM_2024_324_a14/

[1] Accardi L., Kozyrev S.V., Pechen A.N., “Coherent quantum control of $\Lambda $-atoms through the stochastic limit”, Quantum information and computing: Int. Conf. on Quantum Information (Tokyo, 2003), QP–PQ: Quantum Probab. White Noise Anal., 19, ed. by L. Accardi, M. Ohya, N. Watanabe, World Scientific, Hackensack, NJ, 2006, 1–17 | DOI | MR | Zbl

[2] B. R. Andrievsky and A. L. Fradkov, “Speed gradient method and its applications”, Autom. Remote Control, 82:9 (2021), 1463–1518 | DOI | DOI | MR | Zbl

[3] A. S. Antipin, “Minimization of convex functions on convex sets by means of differential equations”, Diff. Eqns., 30:9 (1994), 1365–1375 | MR | Zbl

[4] Araki T., Nori F., Gneiting C., “Robust quantum control with disorder-dressed evolution”, Phys. Rev. A, 107:3 (2023), 032609 | DOI | MR

[5] Boscain U., Sigalotti M., Sugny D., “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2:3 (2021), 030203 | DOI

[6] Brif C., Chakrabarti R., Rabitz H., “Control of quantum phenomena: Past, present and future”, New J. Phys., 12:7 (2010), 075008 | DOI | MR | Zbl

[7] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer, Dordrecht, 1990 | MR | Zbl

[8] Caneva T., Calarco T., Montangero S., “Chopped random-basis quantum optimization”, Phys. Rev. A, 84:2 (2011), 022326 | DOI

[9] D'Alessandro D., Introduction to quantum control and dynamics, 2nd ed., CRC Press, Boca Raton, FL, 2021 | DOI | MR | Zbl

[10] D'Alessandro D., Sheller B.A., Zhu Z., “Time-optimal control of quantum lambda systems in the KP configuration”, J. Math. Phys., 61:5 (2020), 052107 | DOI | MR | Zbl

[11] Dann R., Tobalina A., Kosloff R., “Fast route to equilibration”, Phys. Rev. A, 101:5 (2020), 052102 | DOI | MR

[12] V. F. Demyanov and A. M. Rubinov, Approximate Methods in Optimization Problems, Am. Elsevier Publ., New York, 1970 | MR | MR | Zbl

[13] Dong D., Petersen I.R., “Quantum control theory and applications: A survey”, IET Control Theory Appl., 4:12 (2010), 2651–2671 | DOI | MR

[14] Elovenkova M., Pechen A., “Control landscape of measurement-assisted transition probability for a three-level quantum system with dynamical symmetry”, Quantum Rep., 5:3 (2023), 526–545 | DOI

[15] Fernandes M.E.F., Fanchini F.F., de Lima E.F., Castelano L.K., “Effectiveness of the Krotov method in finding controls for open quantum systems”, J. Phys. A: Math. Theor., 56:49 (2023), 495303 | DOI | MR

[16] Goerz M.H., Reich D.M., Koch C.P., “Optimal control theory for a unitary operation under dissipative evolution”, New J. Phys., 16:5 (2014), 055012 ; arXiv: 1312.0111 [quant-ph] | DOI | MR | Zbl | DOI

[17] Goodwin D.L., Vinding M.S., “Accelerated Newton–Raphson GRAPE methods for optimal control”, Phys. Rev. Res., 5:1 (2023), L012042 | DOI

[18] Gough J., “Principles and applications of quantum control engineering”, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 370:1979 (2012), 5241–5258 | DOI | MR | Zbl

[19] J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. Math., 103:3 (2021), 122–126 | DOI | DOI | MR | Zbl

[20] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[21] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl

[22] Judson R.S., Rabitz H., “Teaching lasers to control molecules”, Phys. Rev. Lett., 68:10 (1992), 1500–1503 | DOI

[23] V. A. Kazakov and V. F. Krotov, “Optimal control of resonant interaction between light and matter”, Autom. Remote Control, 48:4 (1987), 430–434 | MR

[24] Khaneja N., Reiss T., Kehlet C., Schulte-Herbrüggen T., Glaser S.J., “Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305 | DOI

[25] Koch C.P., Boscain U., Calarco T., et al., “Quantum optimal control in quantum technologies: Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9 (2022), 19 | DOI

[26] V. V. Kozlov and O. G. Smolyanov, “Mathematical structures related to the description of quantum states”, Dokl. Math., 104:3 (2021), 365–368 | DOI | DOI | MR | Zbl

[27] Krotov V.F., Global methods in optimal control theory, M. Dekker, New York, 1996 | MR | Zbl

[28] V. F. Krotov and I. N. Feldman, “An iterative method for solving optimal control problems”, Eng. Cybern., 21:2 (1983), 123–130 | MR

[29] Kuprov I., Spin: From basic symmetries to quantum optimal control, Springer, Cham, 2023 | DOI | Zbl

[30] E. S. Levitin and B. T. Polyak, “Constrained minimization methods”, USSR Comput. Math. Math. Phys., 6:5 (1966), 1–50 | DOI | Zbl

[31] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54:39 (2021), 395304 | DOI | MR | Zbl

[32] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V., Rabitz H., “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI

[33] Mortensen H.L., Sørensen J.J.W.H., Mølmer K., Sherson J.F., “Fast state transfer in a $\Lambda $-system: A shortcut-to-adiabaticity approach to robust and resource optimized control”, New J. Phys., 20:2 (2018), 025009 | DOI

[34] Morzhin O.V., Pechen A.N., “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 | DOI | MR | Zbl

[35] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russ. Math. Surv., 74:5 (2019), 851–908 | DOI | DOI | MR | Zbl

[36] Morzhin O.V., Pechen A.N., “Optimal state manipulation for a two-qubit system driven by coherent and incoherent controls”, Quantum Inf. Process., 22:6 (2023), 241 | DOI | MR

[37] O. V. Morzhin and A. N. Pechen, “On optimization of coherent and incoherent controls for two-level quantum systems”, Izv. Math., 87:5 (2023), 1024–1050 | DOI | DOI | MR

[38] Morzhin O.V., Pechen A.N., “Krotov type optimization of coherent and incoherent controls for open two-qubit systems”, Izv. Irkutsk. gos. un-ta. Ser. mat., 45 (2023), 3–23 | DOI | MR

[39] Müller M.M., Said R.S., Jelezko F., Calarco T., Montangero S., “One decade of quantum optimal control in the chopped random basis”, Rep. Prog. Phys., 85:7 (2022), 076001 | DOI | MR

[40] A. Nedich, “Three-step method of gradient projection for minimization problems”, Russ. Math., 37:10 (1993), 30–36 | MR | Zbl

[41] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI | MR

[42] Pechen A.N., Borisenok S., Fradkov A.L., “Energy control in a quantum oscillator using coherent control and engineered environment”, Chaos Solitons Fractals, 164 (2022), 112687 | DOI | MR

[43] Pechen A., Rabitz H., “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI | MR

[44] Pechen A.N., Tannor D.J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI

[45] Pechen A.N., Tannor D.J., “Quantum control landscape for a $\Lambda $-atom in the vicinity of second-order traps”, Israel J. Chem., 52:5 (2012), 467–472 ; arXiv: 1508.04169 [quant-ph] | DOI | DOI

[46] Peirce A.P., Dahleh M.A., Rabitz H., “Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications”, Phys. Rev. A, 37:12 (1988), 4950–4964 | DOI | MR

[47] Petruhanov V.N., Pechen A.N., “GRAPE optimization for open quantum systems with time-dependent decoherence rates driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 56:30 (2023), 305303 | DOI | MR | Zbl

[48] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, New York, 1971 | MR

[49] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods”, USSR Comput. Math. Math. Phys., 4:5 (1964), 1–17 | DOI | MR

[50] B. T. Polyak, Introduction to Optimization, Optimization Softw. Inc., New York, 1987 | MR

[51] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl

[52] Schirmer S.G., de Fouquieres P., “Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered”, New J. Phys., 13:7 (2011), 073029 | DOI | Zbl

[53] Schulte-Herbrüggen T., Spörl A., Khaneja N., Glaser S.J., “Optimal control for generating quantum gates in open dissipative systems”, J. Phys. B, 44:15 (2011), 154013 | DOI

[54] Shao J., Naris M., Hauser J., Nicotra M.M., “Solving quantum optimal control problems using projection-operator-based Newton steps”, Phys. Rev. A, 109:1 (2024), 012609 | DOI | MR

[55] Srochko V.A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[56] Strang G., Linear algebra and learning from data, Wellesley-Cambridge Press, Wellesley, MA, 2019 | Zbl

[57] Sugny D., Kontz C., “Optimal control of a three-level quantum system by laser fields plus von Neumann measurements”, Phys. Rev. A, 77:6 (2008), 063420 | DOI | MR

[58] Sutskever I., Martens J., Dahl G., Hinton G., “On the importance of initialization and momentum in deep learning”, Proc. Mach. Learn. Res. (PMLR), 28:3 (2013), 1139–1147

[59] Tannor D.J., Introduction to quantum mechanics: A time dependent perspective, Univ. Sci. Books, Sausalito, CA, 2007

[60] Tannor D.J., Kazakov V., Orlov V., “Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds”, Time-dependent quantum molecular dynamics, Nato ASI Ser., 299, Springer, Boston, 1992, 347–360 | DOI

[61] TensorFlow: Machine learning platform. MomentumOptimizer, Accessed Aug. 5, 2023 https://www.tensorflow.org/api\textunderscore docs/python/tf/compat/v1/train/MomentumOptimizer

[62] Vacchini B., “Test particle in a quantum gas”, Phys. Rev. E, 63:6 (2001), 066115 | DOI

[63] Vacchini B., Hornberger K., “Quantum linear Boltzmann equation”, Phys. Rep., 478:4–6 (2009), 71–120 | DOI | MR

[64] F. P. Vasil'ev and A. Nedich, “On three-step regularized method of gradient projection for solving of minimization problems with inaccurate initial data”, Russ. Math., 37:12 (1993), 34–43 | MR | Zbl

[65] Wang Q.Q., Muller A., Cheng M.T., Zhou H.J., Bianucci P., Shih C.K., “Coherent control of a V-type three-level system in a single quantum dot”, Phys. Rev. Lett., 95:18 (2005), 187404 | DOI

[66] Wilde M.M., Quantum information theory, 2nd ed., Cambridge Univ. Press, Cambridge, 2017 | DOI | MR | Zbl

[67] Wu R., Pechen A., Brif C., Rabitz H., “Controllability of open quantum systems with Kraus-map dynamics”, J. Phys. A: Math. Theor., 40:21 (2007), 5681–5693 | DOI | MR | Zbl

[68] Zhang W., Saripalli R., Leamer J., Glasser R., Bondar D., “All-optical input-agnostic polarization transformer via experimental Kraus-map control”, Eur. Phys. J. Plus, 137:8 (2022), 930 | DOI

[69] V. E. Zobov and V. P. Shauro, “On time-optimal NMR control of states of qutrits represented by quadrupole nuclei with the spin $I=1$”, J. Exp. Theor. Phys., 113:2 (2011), 181–191 | DOI