On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 144-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a consistent perturbative technique for obtaining a time-local linear master equation based on projection methods in the case where the projection operator depends on time. Then we introduce a generalization of the Kawasaki–Gunton projection operator, which allows us to use this technique to derive, generally speaking, nonlinear master equations in the case of arbitrary ansatzes consistent with some set of observables. Most of the results obtained are of a very general nature, but when discussing them, we put emphasis on the application of these results to the theory of open quantum systems.
Keywords: open quantum system, quantum master equation
Mots-clés : projection formalism.
@article{TM_2024_324_a13,
     author = {Kh. Sh. Meretukov and A. E. Teretenkov},
     title = {On {Time-Dependent} {Projectors} and a {Generalization} of the {Thermodynamical} {Approach} in the {Theory} of {Open} {Quantum} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {144--161},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a13/}
}
TY  - JOUR
AU  - Kh. Sh. Meretukov
AU  - A. E. Teretenkov
TI  - On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 144
EP  - 161
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a13/
LA  - ru
ID  - TM_2024_324_a13
ER  - 
%0 Journal Article
%A Kh. Sh. Meretukov
%A A. E. Teretenkov
%T On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 144-161
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a13/
%G ru
%F TM_2024_324_a13
Kh. Sh. Meretukov; A. E. Teretenkov. On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 144-161. http://geodesic.mathdoc.fr/item/TM_2024_324_a13/

[1] Accardi L., Kozyrev S.V., Pechen A.N., “Coherent quantum control of $\Lambda $-atoms through the stochastic limit”, Quantum information and computing: Int. conf. on quantum information (Tokyo, 2003), QP–PQ: Quantum Probab. White Noise Anal., 19, ed. by L. Accardi, M. Ohya, N. Watanabe, World Scientific, Hackensack, NJ, 2006, 1–17 | MR | Zbl

[2] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl

[3] Argyres P.N., Kelley P.L., “Theory of spin resonance and relaxation”, Phys. Rev., 134:1A (1964), 98–111 | DOI

[4] M. Baake and U. Schlaegel, “The Peano–Baker Series”, Proc. Steklov Inst. Math., 275 (2011), 155–159 | DOI | MR | Zbl

[5] T. N. Bakiev, D. V. Nakashidze, and A. M. Savchenko, “Certain relations in statistical physics based on Rényi entropy”, Moscow Univ. Phys. Bull., 75:6 (2020), 559–569 | DOI

[6] Basharov A.M., “The effective Hamiltonian as a necessary basis of the open quantum optical system theory”, J. Phys.: Conf. Ser., 1890 (2021), 012001 | DOI

[7] A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems”, Theor. Math. Phys., 149:2 (2006), 1559–1573 | DOI | DOI | MR | Zbl

[8] Bertlmann R.A., Krammer P., “Bloch vectors for qudits”, J. Phys. A: Math. Theor., 41:23 (2008), 235303 | DOI | MR | Zbl

[9] N. N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics, Argonne Natl. Lab., US Atomic Energy Commission, Lemont, IL, 1960 | MR | MR

[10] Bouchard L.-S., Mori–Zwanzig equations with time-dependent Liouvillian, E-print, 2007, arXiv: 0709.1358 [physics.chem-ph] | DOI

[11] Breuer H.-P., “Non-Markovian generalization of the Lindblad theory of open quantum systems”, Phys. Rev. A., 75:2 (2007), 022103 | DOI | MR

[12] Breuer H.-P., Gemmer J., Michel M., “Non-Markovian quantum dynamics: Correlated projection superoperators and Hilbert space averaging”, Phys. Rev. E, 73:1 (2006), 016139 | DOI | MR

[13] Breuer H.-P., Kappler B., Petruccione F., “Stochastic wave-function method for non-Markovian quantum master equations”, Phys. Rev. A, 59:2 (1999), 1633–1643 | DOI

[14] Breuer H.-P., Kappler B., Petruccione F., “The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence”, Ann. Phys., 291:1 (2001), 36–70 | DOI | MR | Zbl

[15] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, Oxford, 2007 | MR | Zbl

[16] Coddington E.A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | MR | Zbl

[17] Davies E.B., “Markovian master equations”, Commun. Math. Phys., 39:2 (1974), 91–110 | DOI | MR | Zbl

[18] De Palma G., Mari A., Giovannetti V., Holevo A.S., “Normal form decomposition for Gaussian-to-Gaussian superoperators”, J. Math. Phys., 56:5 (2015), 052202 | DOI | MR | Zbl

[19] V. V. Dodonov and V. I. Man'ko, “Evolution equations for the density matrices of linear open systems”, Classical and Quantum Effects in Electrodynamics, Nova Sci. Publ., Commak, NY, 1988, 53–60 | MR

[20] Fick E., Sauermann G., The quantum statistics of dynamic processes, Springer Ser. Solid-State Sci., 86, Springer, Berlin, 1990 | MR

[21] Gasbarri G., Ferialdi L., “Recursive approach for non-Markovian time-convolutionless master equations”, Phys. Rev. A, 97:2 (2018), 022114 | DOI | MR

[22] Heinosaari T., Holevo A.S., Wolf M.M., “The semigroup structure of Gaussian channels”, Quantum Inf. Comput., 10:7–8 (2010), 619–635 | MR | Zbl

[23] Hinds Mingo E., Guryanova Y., Faist P., Jennings D., “Quantum thermodynamics with multiple conserved quantities”, Thermodynamics in the quantum regime: Fundamental aspects and new directions, Springer, Cham, 2018, 751–771 | DOI

[24] A. S. Holevo, Statistical Structure of Quantum Theory, Springer, Berlin, 2001 | MR | Zbl

[25] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[26] Kholevo A.S., Matematicheskie osnovy kvantovoi informatiki, Lekts. kursy NOTs, 30, MIAN, M., 2018 | DOI | MR

[27] Jaynes E.T., “Information theory and statistical mechanics. II”, Phys. Rev., 108:2 (1957), 171–190 | DOI | MR | Zbl

[28] Karasev A.Yu., Teretenkov A.E., “Time-convolutionless master equations for composite open quantum systems”, Lobachevskii J. Math., 44:6 (2023), 2051–2064 | DOI | MR | Zbl

[29] Kato A., On reduced dynamics of quantum-thermodynamical systems, Diss., Techn. Univ. Berlin, Berlin, 2004

[30] Kato A., Kaufmann M., Muschik W., Schirrmeister D., “Different dynamics and entropy rates in quantum-thermodynamics”, J. Non-Equilib. Thermodyn., 25:1 (2000), 63–86 | DOI | MR | Zbl

[31] Kawasaki K., Gunton J.D., “Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects”, Phys. Rev. A, 8:4 (1973), 2048–2064 | DOI

[32] Kubo R., “Stochastic Liouville equations”, J. Math. Phys., 4:2 (1963), 174–183 | DOI | MR | Zbl

[33] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54:39 (2021), 395304 | DOI | MR | Zbl

[34] Los V.F., “Time-dependent projection operator and nonlinear generalized master equations”, Phys. Rev. E, 106:3 (2022), 034107 | DOI | MR

[35] Mori H., “A continued-fraction representation of the time-correlation functions”, Prog. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR

[36] Mori T., “Floquet states in open quantum systems”, Annu. Rev. Condens. Matter Phys., 14 (2023), 35–56 | DOI

[37] Morzhin O.V., Pechen A.N., “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc., 2362 (2021), 060003 | DOI | MR

[38] Nakajima S., “On quantum theory of transport phenomena: Steady diffusion”, Prog. Theor. Phys., 20:6 (1958), 948–959 | DOI | MR | Zbl

[39] Nestmann K., Timm C., Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots, E-print, 2019, arXiv: 1903.05132 [cond-mat.mes-hall] | DOI

[40] Petruhanov V.N., Pechen A.N., “Quantum gate generation in two-level open quantum systems by coherent and incoherent photons found with gradient search”, Photonics, 10:2 (2023), 220 | DOI

[41] Rau J., Müller B., “From reversible quantum microdynamics to irreversible quantum transport”, Phys. Rep., 272:1 (1996), 1–59 | DOI | MR

[42] Robertson B., “Equations of motion in nonequilibrium statistical mechanics”, Phys. Rev., 144:1 (1966), 151–161 | DOI | MR | Zbl

[43] Seke J., “Equations of motion in nonequilibrium statistical mechanics of open systems”, Phys. Rev. A, 21:6 (1980), 2156–2165 | DOI | MR

[44] Semin V., Petruccione F., “Projection operators in the theory of open quantum systems”, Proc. 60th Annu. Conf. South Afr. Inst. Phys. (SAIP2015), SAIP, Pretoria, 2016, 539–544

[45] Semin V., Petruccione F., “Dynamical and thermodynamical approaches to open quantum systems”, Sci. Rep., 10 (2020), 2607 | DOI

[46] Shibata F., Takahashi Y., Hashitsume N., “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations”, J. Stat. Phys., 17:4 (1977), 171–187 | DOI | MR

[47] Szczygielski K., Gelbwaser-Klimovsky D., Alicki R., “Markovian master equation and thermodynamics of a two-level system in a strong laser field”, Phys. Rev. E, 87:1 (2013), 012120 | DOI

[48] Teretenkov A.E., “Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate”, Lobachevskii J. Math., 40:10 (2019), 1587–1605 | DOI | MR | Zbl

[49] Teretenkov A.E., “Irreversible quantum evolution with quadratic generator: Review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 1930001 | DOI | MR | Zbl

[50] Teretenkov A.E., “Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit”, J. Phys. A: Math. Theor., 54:26 (2021), 265302 | DOI | MR | Zbl

[51] Teretenkov A.E., “Long-time Markovianity of multi-level systems in the rotating wave approximation”, Lobachevskii J. Math., 42:10 (2021), 2455–2465 | DOI | MR

[52] Teretenkov A.E., “Effective Gibbs state for averaged observables”, Entropy, 24:8 (2022), 1144 | DOI | MR

[53] Teretenkov A.E., “Effective Heisenberg equations for quadratic Hamiltonians”, Int. J. Mod. Phys. A, 37:20–21 (2022), 2243020 | DOI | MR

[54] A. I. Trubilko and A. M. Basharov, “The effective Hamiltonian method in the thermodynamics of two resonantly interacting quantum oscillators”, J. Exp. Theor. Phys., 129:3 (2019), 339–348 | DOI | DOI

[55] A. I. Trubilko and A. M. Basharov, “Hierarchy of times of open optical quantum systems and the role of the effective Hamiltonian in the white noise approximation”, JETP Lett., 111:9 (2020), 532–538 | DOI | DOI

[56] Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101 | DOI

[57] Trushechkin A., “Unified Gorini–Kossakowski–Lindblad–Sudarshan quantum master equation beyond the secular approximation”, Phys. Rev. A, 103:6 (2021), 062226 | DOI | MR

[58] A. S. Trushechkin, “Derivation of the Redfield quantum master equation and corrections to it by the Bogoliubov method”, Proc. Steklov Inst. Math., 313 (2021), 246–257 | DOI | DOI | MR | Zbl

[59] Van Hove L., “Quantum-mechanical perturbations giving rise to a statistical transport equation”, Physica, 21:1–5 (1954), 517–540 | DOI | MR

[60] Van Kampen N.G., “A cumulant expansion for stochastic linear differential equations. I”, Physica, 74:2 (1974), 215–238 | DOI | MR

[61] Van Kampen N.G., “A cumulant expansion for stochastic linear differential equations. II”, Physica, 74:2 (1974), 239–247 | DOI | MR

[62] Yashin V.I., Kiktenko E.O., Mastiukova A.S., Fedorov A.K., “Minimal informationally complete measurements for probability representation of quantum dynamics”, New J. Phys., 22:10 (2020), 103026 | DOI | MR

[63] D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 1, Basic Concepts, Kinetic Theory, Akad. Verlag, Berlin, 1996 | MR | Zbl

[64] Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR