Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a13, author = {Kh. Sh. Meretukov and A. E. Teretenkov}, title = {On {Time-Dependent} {Projectors} and a {Generalization} of the {Thermodynamical} {Approach} in the {Theory} of {Open} {Quantum} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {144--161}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a13/} }
TY - JOUR AU - Kh. Sh. Meretukov AU - A. E. Teretenkov TI - On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 144 EP - 161 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2024_324_a13/ LA - ru ID - TM_2024_324_a13 ER -
%0 Journal Article %A Kh. Sh. Meretukov %A A. E. Teretenkov %T On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 144-161 %V 324 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2024_324_a13/ %G ru %F TM_2024_324_a13
Kh. Sh. Meretukov; A. E. Teretenkov. On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 144-161. http://geodesic.mathdoc.fr/item/TM_2024_324_a13/
[1] Accardi L., Kozyrev S.V., Pechen A.N., “Coherent quantum control of $\Lambda $-atoms through the stochastic limit”, Quantum information and computing: Int. conf. on quantum information (Tokyo, 2003), QP–PQ: Quantum Probab. White Noise Anal., 19, ed. by L. Accardi, M. Ohya, N. Watanabe, World Scientific, Hackensack, NJ, 2006, 1–17 | MR | Zbl
[2] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl
[3] Argyres P.N., Kelley P.L., “Theory of spin resonance and relaxation”, Phys. Rev., 134:1A (1964), 98–111 | DOI
[4] M. Baake and U. Schlaegel, “The Peano–Baker Series”, Proc. Steklov Inst. Math., 275 (2011), 155–159 | DOI | MR | Zbl
[5] T. N. Bakiev, D. V. Nakashidze, and A. M. Savchenko, “Certain relations in statistical physics based on Rényi entropy”, Moscow Univ. Phys. Bull., 75:6 (2020), 559–569 | DOI
[6] Basharov A.M., “The effective Hamiltonian as a necessary basis of the open quantum optical system theory”, J. Phys.: Conf. Ser., 1890 (2021), 012001 | DOI
[7] A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems”, Theor. Math. Phys., 149:2 (2006), 1559–1573 | DOI | DOI | MR | Zbl
[8] Bertlmann R.A., Krammer P., “Bloch vectors for qudits”, J. Phys. A: Math. Theor., 41:23 (2008), 235303 | DOI | MR | Zbl
[9] N. N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics, Argonne Natl. Lab., US Atomic Energy Commission, Lemont, IL, 1960 | MR | MR
[10] Bouchard L.-S., Mori–Zwanzig equations with time-dependent Liouvillian, E-print, 2007, arXiv: 0709.1358 [physics.chem-ph] | DOI
[11] Breuer H.-P., “Non-Markovian generalization of the Lindblad theory of open quantum systems”, Phys. Rev. A., 75:2 (2007), 022103 | DOI | MR
[12] Breuer H.-P., Gemmer J., Michel M., “Non-Markovian quantum dynamics: Correlated projection superoperators and Hilbert space averaging”, Phys. Rev. E, 73:1 (2006), 016139 | DOI | MR
[13] Breuer H.-P., Kappler B., Petruccione F., “Stochastic wave-function method for non-Markovian quantum master equations”, Phys. Rev. A, 59:2 (1999), 1633–1643 | DOI
[14] Breuer H.-P., Kappler B., Petruccione F., “The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence”, Ann. Phys., 291:1 (2001), 36–70 | DOI | MR | Zbl
[15] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, Oxford, 2007 | MR | Zbl
[16] Coddington E.A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | MR | Zbl
[17] Davies E.B., “Markovian master equations”, Commun. Math. Phys., 39:2 (1974), 91–110 | DOI | MR | Zbl
[18] De Palma G., Mari A., Giovannetti V., Holevo A.S., “Normal form decomposition for Gaussian-to-Gaussian superoperators”, J. Math. Phys., 56:5 (2015), 052202 | DOI | MR | Zbl
[19] V. V. Dodonov and V. I. Man'ko, “Evolution equations for the density matrices of linear open systems”, Classical and Quantum Effects in Electrodynamics, Nova Sci. Publ., Commak, NY, 1988, 53–60 | MR
[20] Fick E., Sauermann G., The quantum statistics of dynamic processes, Springer Ser. Solid-State Sci., 86, Springer, Berlin, 1990 | MR
[21] Gasbarri G., Ferialdi L., “Recursive approach for non-Markovian time-convolutionless master equations”, Phys. Rev. A, 97:2 (2018), 022114 | DOI | MR
[22] Heinosaari T., Holevo A.S., Wolf M.M., “The semigroup structure of Gaussian channels”, Quantum Inf. Comput., 10:7–8 (2010), 619–635 | MR | Zbl
[23] Hinds Mingo E., Guryanova Y., Faist P., Jennings D., “Quantum thermodynamics with multiple conserved quantities”, Thermodynamics in the quantum regime: Fundamental aspects and new directions, Springer, Cham, 2018, 751–771 | DOI
[24] A. S. Holevo, Statistical Structure of Quantum Theory, Springer, Berlin, 2001 | MR | Zbl
[25] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl
[26] Kholevo A.S., Matematicheskie osnovy kvantovoi informatiki, Lekts. kursy NOTs, 30, MIAN, M., 2018 | DOI | MR
[27] Jaynes E.T., “Information theory and statistical mechanics. II”, Phys. Rev., 108:2 (1957), 171–190 | DOI | MR | Zbl
[28] Karasev A.Yu., Teretenkov A.E., “Time-convolutionless master equations for composite open quantum systems”, Lobachevskii J. Math., 44:6 (2023), 2051–2064 | DOI | MR | Zbl
[29] Kato A., On reduced dynamics of quantum-thermodynamical systems, Diss., Techn. Univ. Berlin, Berlin, 2004
[30] Kato A., Kaufmann M., Muschik W., Schirrmeister D., “Different dynamics and entropy rates in quantum-thermodynamics”, J. Non-Equilib. Thermodyn., 25:1 (2000), 63–86 | DOI | MR | Zbl
[31] Kawasaki K., Gunton J.D., “Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects”, Phys. Rev. A, 8:4 (1973), 2048–2064 | DOI
[32] Kubo R., “Stochastic Liouville equations”, J. Math. Phys., 4:2 (1963), 174–183 | DOI | MR | Zbl
[33] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54:39 (2021), 395304 | DOI | MR | Zbl
[34] Los V.F., “Time-dependent projection operator and nonlinear generalized master equations”, Phys. Rev. E, 106:3 (2022), 034107 | DOI | MR
[35] Mori H., “A continued-fraction representation of the time-correlation functions”, Prog. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR
[36] Mori T., “Floquet states in open quantum systems”, Annu. Rev. Condens. Matter Phys., 14 (2023), 35–56 | DOI
[37] Morzhin O.V., Pechen A.N., “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc., 2362 (2021), 060003 | DOI | MR
[38] Nakajima S., “On quantum theory of transport phenomena: Steady diffusion”, Prog. Theor. Phys., 20:6 (1958), 948–959 | DOI | MR | Zbl
[39] Nestmann K., Timm C., Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots, E-print, 2019, arXiv: 1903.05132 [cond-mat.mes-hall] | DOI
[40] Petruhanov V.N., Pechen A.N., “Quantum gate generation in two-level open quantum systems by coherent and incoherent photons found with gradient search”, Photonics, 10:2 (2023), 220 | DOI
[41] Rau J., Müller B., “From reversible quantum microdynamics to irreversible quantum transport”, Phys. Rep., 272:1 (1996), 1–59 | DOI | MR
[42] Robertson B., “Equations of motion in nonequilibrium statistical mechanics”, Phys. Rev., 144:1 (1966), 151–161 | DOI | MR | Zbl
[43] Seke J., “Equations of motion in nonequilibrium statistical mechanics of open systems”, Phys. Rev. A, 21:6 (1980), 2156–2165 | DOI | MR
[44] Semin V., Petruccione F., “Projection operators in the theory of open quantum systems”, Proc. 60th Annu. Conf. South Afr. Inst. Phys. (SAIP2015), SAIP, Pretoria, 2016, 539–544
[45] Semin V., Petruccione F., “Dynamical and thermodynamical approaches to open quantum systems”, Sci. Rep., 10 (2020), 2607 | DOI
[46] Shibata F., Takahashi Y., Hashitsume N., “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations”, J. Stat. Phys., 17:4 (1977), 171–187 | DOI | MR
[47] Szczygielski K., Gelbwaser-Klimovsky D., Alicki R., “Markovian master equation and thermodynamics of a two-level system in a strong laser field”, Phys. Rev. E, 87:1 (2013), 012120 | DOI
[48] Teretenkov A.E., “Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate”, Lobachevskii J. Math., 40:10 (2019), 1587–1605 | DOI | MR | Zbl
[49] Teretenkov A.E., “Irreversible quantum evolution with quadratic generator: Review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 1930001 | DOI | MR | Zbl
[50] Teretenkov A.E., “Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit”, J. Phys. A: Math. Theor., 54:26 (2021), 265302 | DOI | MR | Zbl
[51] Teretenkov A.E., “Long-time Markovianity of multi-level systems in the rotating wave approximation”, Lobachevskii J. Math., 42:10 (2021), 2455–2465 | DOI | MR
[52] Teretenkov A.E., “Effective Gibbs state for averaged observables”, Entropy, 24:8 (2022), 1144 | DOI | MR
[53] Teretenkov A.E., “Effective Heisenberg equations for quadratic Hamiltonians”, Int. J. Mod. Phys. A, 37:20–21 (2022), 2243020 | DOI | MR
[54] A. I. Trubilko and A. M. Basharov, “The effective Hamiltonian method in the thermodynamics of two resonantly interacting quantum oscillators”, J. Exp. Theor. Phys., 129:3 (2019), 339–348 | DOI | DOI
[55] A. I. Trubilko and A. M. Basharov, “Hierarchy of times of open optical quantum systems and the role of the effective Hamiltonian in the white noise approximation”, JETP Lett., 111:9 (2020), 532–538 | DOI | DOI
[56] Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101 | DOI
[57] Trushechkin A., “Unified Gorini–Kossakowski–Lindblad–Sudarshan quantum master equation beyond the secular approximation”, Phys. Rev. A, 103:6 (2021), 062226 | DOI | MR
[58] A. S. Trushechkin, “Derivation of the Redfield quantum master equation and corrections to it by the Bogoliubov method”, Proc. Steklov Inst. Math., 313 (2021), 246–257 | DOI | DOI | MR | Zbl
[59] Van Hove L., “Quantum-mechanical perturbations giving rise to a statistical transport equation”, Physica, 21:1–5 (1954), 517–540 | DOI | MR
[60] Van Kampen N.G., “A cumulant expansion for stochastic linear differential equations. I”, Physica, 74:2 (1974), 215–238 | DOI | MR
[61] Van Kampen N.G., “A cumulant expansion for stochastic linear differential equations. II”, Physica, 74:2 (1974), 239–247 | DOI | MR
[62] Yashin V.I., Kiktenko E.O., Mastiukova A.S., Fedorov A.K., “Minimal informationally complete measurements for probability representation of quantum dynamics”, New J. Phys., 22:10 (2020), 103026 | DOI | MR
[63] D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 1, Basic Concepts, Kinetic Theory, Akad. Verlag, Berlin, 1996 | MR | Zbl
[64] Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR