Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a12, author = {D. A. Kronberg}, title = {On the {Structure} of {Postselective} {Transformations} of {Quantum} {States}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {132--143}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a12/} }
D. A. Kronberg. On the Structure of Postselective Transformations of Quantum States. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 132-143. http://geodesic.mathdoc.fr/item/TM_2024_324_a12/
[1] Avanesov A.S., Kronberg D.A., “On eavesdropping strategy for symmetric coherent states quantum cryptography using heterodyne measurement”, Lobachevskii J. Math., 42:10 (2021), 2285–2294 | DOI | MR | Zbl
[2] Croke S., Andersson E., Barnett S.M., Gilson C.R., Jeffers J., “Maximum confidence quantum measurements”, Phys. Rev. Lett., 96:7 (2006), 070401 | DOI
[3] Davies E.B., Lewis J.T., “An operational approach to quantum probability”, Commun. Math. Phys., 17:3 (1970), 239–260 | DOI | MR | Zbl
[4] Dieks D., “Overlap and distinguishability of quantum states”, Phys. Lett. A, 126:5–6 (1988), 303–306 | DOI | MR
[5] Feng Y., Duan R., Ying M., “Unambiguous discrimination between mixed quantum states”, Phys. Rev. A, 70:1 (2004), 012308 | DOI
[6] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel”, Probl. Inf. Transm., 9:3 (1973), 177–183 | MR | Zbl
[7] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl
[8] Ivanovic I.D., “How to differentiate between non-orthogonal states”, Phys. Lett. A, 123:6 (1987), 257–259 | DOI | MR
[9] Kenbaev N.R., Kronberg D.A., “Quantum postselective measurements: Sufficient condition for overcoming the Holevo bound and the role of max-relative entropy”, Phys. Rev. A, 105:1 (2022), 012609 | DOI | MR
[10] Kronberg D.A., “Generalized discrimination between symmetric coherent states for eavesdropping in quantum cryptography”, Lobachevskii J. Math., 41:12 (2020), 2332–2337 | DOI | MR | Zbl
[11] D. A. Kronberg, “Increasing the distinguishability of quantum states with an arbitrary success probability”, Proc. Steklov Inst. Math., 313 (2021), 113–119 | DOI | DOI | MR | Zbl
[12] Kronberg D.A., “Ob uyazvimostyakh kvantovoi kriptografii na geometricheski odnorodnykh kogerentnykh sostoyaniyakh”, Kvantovaya elektronika, 51:10 (2021), 928–937
[13] Kronberg D.A., “Modification of quantum measurements by mapping onto quantum states and classical outcomes”, Lobachevskii J. Math., 43:7 (2022), 1663–1668 | DOI | MR | Zbl
[14] Kronberg D.A., “Success probability for postselective transformations of pure quantum states”, Phys. Rev. A, 106:4 (2022), 042447 | DOI | MR
[15] D. A. Kronberg, “Vulnerability of quantum cryptography with phase–time coding under attenuation conditions”, Theor. Math. Phys., 214:1 (2023), 121–131 | DOI | DOI | MR | Zbl
[16] Kronberg D.A., Nikolaeva A.S., Kurochkin Y.V., Fedorov A.K., “Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol”, Phys. Rev. A, 101:3 (2020), 032334 | DOI | MR
[17] Peres A., “How to differentiate between non-orthogonal states”, Phys. Lett. A, 128:1–2 (1988), 19 | DOI | MR