Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a11, author = {R. Sh. Kalmetev and Yu. N. Orlov and V. Zh. Sakbaev}, title = {Generalized {Coherent} {States} and {Random} {Shift} {Operators}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {124--131}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a11/} }
TY - JOUR AU - R. Sh. Kalmetev AU - Yu. N. Orlov AU - V. Zh. Sakbaev TI - Generalized Coherent States and Random Shift Operators JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 124 EP - 131 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2024_324_a11/ LA - ru ID - TM_2024_324_a11 ER -
R. Sh. Kalmetev; Yu. N. Orlov; V. Zh. Sakbaev. Generalized Coherent States and Random Shift Operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 124-131. http://geodesic.mathdoc.fr/item/TM_2024_324_a11/
[1] Aniello P., Man'ko V., Marmo G., Solimeno S., Zaccaria F., “On the coherent states, displacement operators and quasidistributions associated with deformed quantum oscillators”, J. Opt. B: Quantum Semiclass. Opt., 2:6 (2000), 718–725 | DOI | MR
[2] Borisov L.A., Orlov Yu.N., Sakbaev V.Zh., “Chernoff equivalence for shift operators, generating coherent states in quantum optics”, Lobachevskii J. Math., 39:6 (2018), 742–746 | DOI | MR | Zbl
[3] Chernoff P.R., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[4] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Grad. Texts Math., 194, Springer, New York, 2000 | DOI | MR | Zbl
[5] J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. Math., 103:3 (2021), 122–126 | DOI | DOI | MR | Zbl
[6] Kalmetev R.Sh., Orlov Yu.N., Sakbaev V.Zh., “Generalized coherent states representation”, Lobachevskii J. Math., 42:11 (2021), 2608–2614 | DOI | MR | Zbl
[7] R. Sh. Kalmetev, Yu. N. Orlov, and V. Zh. Sakbaev, “Chernoff iterations as an averaging method for random affine transformations”, Comput. Math. Math. Phys., 62:6 (2022), 996–1006 | DOI | DOI | MR | Zbl
[8] Martin-Dussaud P., “Searching for coherent states: From origins to quantum gravity”, Quantum, 5 (2021), 390 | DOI
[9] Orlov Yu.N., Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004
[10] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl
[11] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl
[12] Rossmann W., Lie groups: An introduction through linear groups, Oxford Grad. Texts Math., 5, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[13] Sakbaev V.Zh., “O zakone bolshikh chisel dlya kompozitsii nezavisimykh sluchainykh operatorov i sluchainykh polugrupp”, Tr. MFTI, 8:1 (2016), 140–152
[14] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | MR | Zbl
[15] Smolyanov O.G., Weizsacker H., Wittin O., “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl
[16] Zamana K.Yu., Sakbaev V.Zh., Kompozitsii nezavisimykh sluchainykh operatorov i svyazannye s nimi differentsialnye uravneniya, Preprint 49, IPM im. M.V. Keldysha, M., 2022 | DOI