Generalized Coherent States and Random Shift Operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 124-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Chernoff averages for random generalized shift operators in the case of noncanonical commutation relations between creation and annihilation operators. We introduce the concepts of shift-dual ladder operators and generalized shift operators. As an example, we consider a one-parameter family of commutation relations for which generalized shift operators are unitary and satisfy the semigroup property on straight lines passing through the origin. For this family, we prove that the sequence of expectations of Feynman–Chernoff iterations of random shift operators converges to a limit strongly continuous semigroup.
Keywords: generalized coherent states, Feynman–Chernoff iterations, random operators, strongly continuous one-parameter semigroups.
@article{TM_2024_324_a11,
     author = {R. Sh. Kalmetev and Yu. N. Orlov and V. Zh. Sakbaev},
     title = {Generalized {Coherent} {States} and {Random} {Shift} {Operators}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {124--131},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a11/}
}
TY  - JOUR
AU  - R. Sh. Kalmetev
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
TI  - Generalized Coherent States and Random Shift Operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 124
EP  - 131
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a11/
LA  - ru
ID  - TM_2024_324_a11
ER  - 
%0 Journal Article
%A R. Sh. Kalmetev
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%T Generalized Coherent States and Random Shift Operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 124-131
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a11/
%G ru
%F TM_2024_324_a11
R. Sh. Kalmetev; Yu. N. Orlov; V. Zh. Sakbaev. Generalized Coherent States and Random Shift Operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 124-131. http://geodesic.mathdoc.fr/item/TM_2024_324_a11/

[1] Aniello P., Man'ko V., Marmo G., Solimeno S., Zaccaria F., “On the coherent states, displacement operators and quasidistributions associated with deformed quantum oscillators”, J. Opt. B: Quantum Semiclass. Opt., 2:6 (2000), 718–725 | DOI | MR

[2] Borisov L.A., Orlov Yu.N., Sakbaev V.Zh., “Chernoff equivalence for shift operators, generating coherent states in quantum optics”, Lobachevskii J. Math., 39:6 (2018), 742–746 | DOI | MR | Zbl

[3] Chernoff P.R., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl

[4] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Grad. Texts Math., 194, Springer, New York, 2000 | DOI | MR | Zbl

[5] J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. Math., 103:3 (2021), 122–126 | DOI | DOI | MR | Zbl

[6] Kalmetev R.Sh., Orlov Yu.N., Sakbaev V.Zh., “Generalized coherent states representation”, Lobachevskii J. Math., 42:11 (2021), 2608–2614 | DOI | MR | Zbl

[7] R. Sh. Kalmetev, Yu. N. Orlov, and V. Zh. Sakbaev, “Chernoff iterations as an averaging method for random affine transformations”, Comput. Math. Math. Phys., 62:6 (2022), 996–1006 | DOI | DOI | MR | Zbl

[8] Martin-Dussaud P., “Searching for coherent states: From origins to quantum gravity”, Quantum, 5 (2021), 390 | DOI

[9] Orlov Yu.N., Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004

[10] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl

[11] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl

[12] Rossmann W., Lie groups: An introduction through linear groups, Oxford Grad. Texts Math., 5, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[13] Sakbaev V.Zh., “O zakone bolshikh chisel dlya kompozitsii nezavisimykh sluchainykh operatorov i sluchainykh polugrupp”, Tr. MFTI, 8:1 (2016), 140–152

[14] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | MR | Zbl

[15] Smolyanov O.G., Weizsacker H., Wittin O., “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl

[16] Zamana K.Yu., Sakbaev V.Zh., Kompozitsii nezavisimykh sluchainykh operatorov i svyazannye s nimi differentsialnye uravneniya, Preprint 49, IPM im. M.V. Keldysha, M., 2022 | DOI