On Extreme Points of Sets in Operator Spaces and State Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 10-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a representation of the set of quantum states in terms of barycenters of nonnegative normalized finitely additive measures on the unit sphere $S_1(\mathcal H)$ of a Hilbert space $\mathcal H$. For a measure on $S_1(\mathcal H)$, we find conditions in terms of its properties under which the barycenter of this measure belongs to the set of extreme points of the family of quantum states and to the set of normal states. The unitary elements of a unital $\mathrm C^*$-algebra are characterized in terms of extreme points. We also study extreme points $\mathrm {extr}(\mathcal E^1)$ of the unit ball $\mathcal E^1$ of a normed ideal operator space $\langle \mathcal E,\| \cdot \|_{\mathcal E}\rangle $ on $\mathcal H$. If $U\in \mathrm {extr}(\mathcal E^1)$ for some unitary operator $U\in \mathcal {B}(\mathcal H)$, then $V\in \mathrm {extr}(\mathcal E^1)$ for all unitary operators $V\in \mathcal {B}(\mathcal H)$. In addition, we construct quantum correlations corresponding to singular states on the algebra of all bounded operators in a Hilbert space.
Keywords: Hilbert space, linear operator, $\mathrm C^*$-algebra, von Neumann algebra, normed ideal operator space, quantum state, finitely additive measure, extreme point, quantum correlations generated by a state.
Mots-clés : barycenter
@article{TM_2024_324_a1,
     author = {G. G. Amosov and A. M. Bikchentaev and V. Zh. Sakbaev},
     title = {On {Extreme} {Points} of {Sets} in {Operator} {Spaces} and {State} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {10--23},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a1/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - A. M. Bikchentaev
AU  - V. Zh. Sakbaev
TI  - On Extreme Points of Sets in Operator Spaces and State Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 10
EP  - 23
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a1/
LA  - ru
ID  - TM_2024_324_a1
ER  - 
%0 Journal Article
%A G. G. Amosov
%A A. M. Bikchentaev
%A V. Zh. Sakbaev
%T On Extreme Points of Sets in Operator Spaces and State Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 10-23
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a1/
%G ru
%F TM_2024_324_a1
G. G. Amosov; A. M. Bikchentaev; V. Zh. Sakbaev. On Extreme Points of Sets in Operator Spaces and State Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 10-23. http://geodesic.mathdoc.fr/item/TM_2024_324_a1/

[1] Akemann C., Weaver N., “$\mathcal B(H)$ has a pure state that is not multiplicative on any masa”, Proc. Natl. Acad. Sci. USA, 105:14 (2008), 5313–5314 | DOI | MR | Zbl

[2] Amosov G., “Remark on negative solution to the Tsirelson conjecture about quantum correlations”, AIP Conf. Proc., 2362:1 (2021), 060001 | DOI

[3] G. G. Amosov and V. I. Man'ko, “Evolution of probability measures associated with quantum systems”, Theor. Math. Phys., 142:2 (2005), 306–310 | DOI | DOI | MR | Zbl

[4] G. G. Amosov and V. Zh. Sakbaev, “On analogs of spectral decomposition of a quantum state”, Math. Notes, 93:3–4 (2013), 351–359 | DOI | DOI | MR | Zbl

[5] G. G. Amosov and V. Zh. Sakbaev, “Geometric properties of systems of vector states and expansion of states in Pettis integrals”, St. Petersburg Math. J., 27:4 (2016), 589–597 | DOI | MR | MR | Zbl

[6] Berntzen R., “Extreme points of the closed unit ball in $C^*$-algebras”, Colloq. Math., 74:1 (1997), 99–100 | DOI | MR | Zbl

[7] Blackadar B., Operator algebras: Theory of $\mathrm C^*$-algebras and von Neumann algebras, Encycl. Math. Sci., 122, Springer, Berlin, 2006 | DOI | MR

[8] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1: $C^*$- and $W^*$-Algebras, Symmetry Groups, Decomposition of States, Springer, New York, 1987 | MR | Zbl

[9] N. Dunford and J. T. Schwartz, Linear Operators, \textup {Part 1:} General Theory, Interscience, New York, 1958 | MR

[10] De Jager P., Conradie J., “Extreme point methods in the study of isometries on certain noncommutative spaces”, Glasg. Math. J., 64:2 (2022), 462–483 | DOI | MR | Zbl

[11] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Transl. Math. Monogr., 18, Am. Math. Soc., Providence, RI, 1969 | MR

[12] Hansen F., “An operator inequality”, Math. Ann., 246:3 (1980), 249–250 | DOI | MR | Zbl

[13] Ji Z., Natarajan A., Vidick T., Wright J., Yuen H., “$\mathrm {MIP}^*=\mathrm {RE}$”, Commun. ACM, 64:11 (2021), 131–138 | DOI | MR | Zbl

[14] G. J. Murphy, $\mathrm {C}^*$-Algebras and Operator Theory, Academic Press, Boston, MA, 1990 | MR

[15] Sherstnev A.N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008

[16] Simon B., Trace ideals and their applications, Math. Surv. Monogr., 120, 2nd ed., Am. Math. Soc., Providence, RI, 2005 | MR | Zbl

[17] Takesaki M., Theory of operator algebras. I, Encycl. Math. Sci., 124, Springer, Berlin, 2002 | MR | Zbl

[18] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Am. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl