On Extreme Points of Sets in Operator Spaces and State Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 10-23

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a representation of the set of quantum states in terms of barycenters of nonnegative normalized finitely additive measures on the unit sphere $S_1(\mathcal H)$ of a Hilbert space $\mathcal H$. For a measure on $S_1(\mathcal H)$, we find conditions in terms of its properties under which the barycenter of this measure belongs to the set of extreme points of the family of quantum states and to the set of normal states. The unitary elements of a unital $\mathrm C^*$-algebra are characterized in terms of extreme points. We also study extreme points $\mathrm {extr}(\mathcal E^1)$ of the unit ball $\mathcal E^1$ of a normed ideal operator space $\langle \mathcal E,\| \cdot \|_{\mathcal E}\rangle $ on $\mathcal H$. If $U\in \mathrm {extr}(\mathcal E^1)$ for some unitary operator $U\in \mathcal {B}(\mathcal H)$, then $V\in \mathrm {extr}(\mathcal E^1)$ for all unitary operators $V\in \mathcal {B}(\mathcal H)$. In addition, we construct quantum correlations corresponding to singular states on the algebra of all bounded operators in a Hilbert space.
Keywords: Hilbert space, linear operator, $\mathrm C^*$-algebra, von Neumann algebra, normed ideal operator space, quantum state, finitely additive measure, extreme point, quantum correlations generated by a state.
Mots-clés : barycenter
@article{TM_2024_324_a1,
     author = {G. G. Amosov and A. M. Bikchentaev and V. Zh. Sakbaev},
     title = {On {Extreme} {Points} of {Sets} in {Operator} {Spaces} and {State} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {10--23},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a1/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - A. M. Bikchentaev
AU  - V. Zh. Sakbaev
TI  - On Extreme Points of Sets in Operator Spaces and State Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 10
EP  - 23
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a1/
LA  - ru
ID  - TM_2024_324_a1
ER  - 
%0 Journal Article
%A G. G. Amosov
%A A. M. Bikchentaev
%A V. Zh. Sakbaev
%T On Extreme Points of Sets in Operator Spaces and State Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 10-23
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a1/
%G ru
%F TM_2024_324_a1
G. G. Amosov; A. M. Bikchentaev; V. Zh. Sakbaev. On Extreme Points of Sets in Operator Spaces and State Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 10-23. http://geodesic.mathdoc.fr/item/TM_2024_324_a1/