Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a1, author = {G. G. Amosov and A. M. Bikchentaev and V. Zh. Sakbaev}, title = {On {Extreme} {Points} of {Sets} in {Operator} {Spaces} and {State} {Spaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {10--23}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a1/} }
TY - JOUR AU - G. G. Amosov AU - A. M. Bikchentaev AU - V. Zh. Sakbaev TI - On Extreme Points of Sets in Operator Spaces and State Spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 10 EP - 23 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2024_324_a1/ LA - ru ID - TM_2024_324_a1 ER -
%0 Journal Article %A G. G. Amosov %A A. M. Bikchentaev %A V. Zh. Sakbaev %T On Extreme Points of Sets in Operator Spaces and State Spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 10-23 %V 324 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2024_324_a1/ %G ru %F TM_2024_324_a1
G. G. Amosov; A. M. Bikchentaev; V. Zh. Sakbaev. On Extreme Points of Sets in Operator Spaces and State Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 10-23. http://geodesic.mathdoc.fr/item/TM_2024_324_a1/
[1] Akemann C., Weaver N., “$\mathcal B(H)$ has a pure state that is not multiplicative on any masa”, Proc. Natl. Acad. Sci. USA, 105:14 (2008), 5313–5314 | DOI | MR | Zbl
[2] Amosov G., “Remark on negative solution to the Tsirelson conjecture about quantum correlations”, AIP Conf. Proc., 2362:1 (2021), 060001 | DOI
[3] G. G. Amosov and V. I. Man'ko, “Evolution of probability measures associated with quantum systems”, Theor. Math. Phys., 142:2 (2005), 306–310 | DOI | DOI | MR | Zbl
[4] G. G. Amosov and V. Zh. Sakbaev, “On analogs of spectral decomposition of a quantum state”, Math. Notes, 93:3–4 (2013), 351–359 | DOI | DOI | MR | Zbl
[5] G. G. Amosov and V. Zh. Sakbaev, “Geometric properties of systems of vector states and expansion of states in Pettis integrals”, St. Petersburg Math. J., 27:4 (2016), 589–597 | DOI | MR | MR | Zbl
[6] Berntzen R., “Extreme points of the closed unit ball in $C^*$-algebras”, Colloq. Math., 74:1 (1997), 99–100 | DOI | MR | Zbl
[7] Blackadar B., Operator algebras: Theory of $\mathrm C^*$-algebras and von Neumann algebras, Encycl. Math. Sci., 122, Springer, Berlin, 2006 | DOI | MR
[8] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1: $C^*$- and $W^*$-Algebras, Symmetry Groups, Decomposition of States, Springer, New York, 1987 | MR | Zbl
[9] N. Dunford and J. T. Schwartz, Linear Operators, \textup {Part 1:} General Theory, Interscience, New York, 1958 | MR
[10] De Jager P., Conradie J., “Extreme point methods in the study of isometries on certain noncommutative spaces”, Glasg. Math. J., 64:2 (2022), 462–483 | DOI | MR | Zbl
[11] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Transl. Math. Monogr., 18, Am. Math. Soc., Providence, RI, 1969 | MR
[12] Hansen F., “An operator inequality”, Math. Ann., 246:3 (1980), 249–250 | DOI | MR | Zbl
[13] Ji Z., Natarajan A., Vidick T., Wright J., Yuen H., “$\mathrm {MIP}^*=\mathrm {RE}$”, Commun. ACM, 64:11 (2021), 131–138 | DOI | MR | Zbl
[14] G. J. Murphy, $\mathrm {C}^*$-Algebras and Operator Theory, Academic Press, Boston, MA, 1990 | MR
[15] Sherstnev A.N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008
[16] Simon B., Trace ideals and their applications, Math. Surv. Monogr., 120, 2nd ed., Am. Math. Soc., Providence, RI, 2005 | MR | Zbl
[17] Takesaki M., Theory of operator algebras. I, Encycl. Math. Sci., 124, Springer, Berlin, 2002 | MR | Zbl
[18] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Am. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl