On Pringsheim Convergence of a Subsequence of Partial Sums of a Multiple Trigonometric Fourier Series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 167-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

A. N. Kolmogorov's famous theorem of 1925 implies that the partial sums of the Fourier series of any integrable function $f$ of one variable converge to it in $L^p$ for all $p\in (0,1)$. It is known that this does not hold true for functions of several variables. In this paper we prove that, nevertheless, for any function of several variables there is a subsequence of Pringsheim partial sums that converges to the function in $L^p$ for all $p\in (0,1)$. At the same time, in a fairly general case, when we take the partial sums of the Fourier series of a function of several variables over an expanding system of index sets, there exists a function for which the absolute values of a certain subsequence of these partial sums tend to infinity almost everywhere. This is so, in particular, for a system of dilations of a fixed bounded convex body and for hyperbolic crosses.
Keywords: measurable functions, integrable functions, trigonometric Fourier series, Pringsheim convergence, subsequence of partial sums, almost everywhere convergence, Bernstein's summation method for Fourier series.
@article{TM_2023_323_a8,
     author = {S. V. Konyagin},
     title = {On {Pringsheim} {Convergence} of a {Subsequence} of {Partial} {Sums} of a {Multiple} {Trigonometric} {Fourier} {Series}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {167--180},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a8/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On Pringsheim Convergence of a Subsequence of Partial Sums of a Multiple Trigonometric Fourier Series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 167
EP  - 180
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_323_a8/
LA  - ru
ID  - TM_2023_323_a8
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On Pringsheim Convergence of a Subsequence of Partial Sums of a Multiple Trigonometric Fourier Series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 167-180
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_323_a8/
%G ru
%F TM_2023_323_a8
S. V. Konyagin. On Pringsheim Convergence of a Subsequence of Partial Sums of a Multiple Trigonometric Fourier Series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 167-180. http://geodesic.mathdoc.fr/item/TM_2023_323_a8/

[1] Getsadze R.D., “O raskhodimosti po mere kratnykh ryadov Fure”, Soobsch. AN Gruz. SSR, 122:2 (1986), 269–271 | MR

[2] Kolmogoroff A., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fundam. math., 7 (1925), 24–29 | DOI

[3] S. V. Konyagin, “On divergence of a subsequence of the partial sums of multiple trigonometric Fourier series”, Proc. Steklov Inst. Math., 190 (1992), 107–121 | MR | Zbl

[4] S. V. Konyagin, “On the Pringsheim convergence of a subsequence of partial sums of a Fourier trigonometric series”, Proc. Steklov Inst. Math., 319:Suppl. 1 (2022), S156–S161 | DOI | MR | Zbl

[5] Stein E.M., “On limits of sequences of operators”, Ann. Math. Ser. 2, 74:1 (1961), 140–170 | DOI | MR | Zbl

[6] A. A. Yudin and V. A. Yudin, “Discrete imbedding theorems and Lebesgue constants”, Math. Notes, 22:3 (1977), 702–711 | DOI | MR | Zbl

[7] V. A. Yudin, “A lower bound for Lebesgue constants”, Math. Notes, 25:1 (1979), 63–65 | DOI | MR | Zbl | Zbl