Sobolev and Besov Classes on Infinite-Dimensional Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 65-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss various definitions of Sobolev and Besov classes on infinite-dimensional spaces, give a survey of the results on coincidence of some of these classes, and obtain a number of new results.
Keywords: Sobolev space, Gaussian measure, differentiable measure.
Mots-clés : Besov space
@article{TM_2023_323_a3,
     author = {V. I. Bogachev},
     title = {Sobolev and {Besov} {Classes} on {Infinite-Dimensional} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--86},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a3/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Sobolev and Besov Classes on Infinite-Dimensional Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 65
EP  - 86
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_323_a3/
LA  - ru
ID  - TM_2023_323_a3
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Sobolev and Besov Classes on Infinite-Dimensional Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 65-86
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_323_a3/
%G ru
%F TM_2023_323_a3
V. I. Bogachev. Sobolev and Besov Classes on Infinite-Dimensional Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 65-86. http://geodesic.mathdoc.fr/item/TM_2023_323_a3/

[1] Addona D., Menegatti G., Miranda M., \textup {Jr.}, “$BV$ functions on open domains: The Wiener case and a Fomin differentiable case”, Commun. Pure Appl. Anal., 19:5 (2020), 2679–2711 | DOI | MR | Zbl

[2] Addona D., Menegatti G., Miranda M., \textup {Jr.}, “Characterizations of Sobolev spaces on sublevel sets in abstract Wiener spaces”, J. Math. Anal. Appl., 524:1 (2023), 127075 | DOI | MR

[3] H. Airault, V. I. Bogachev, and P. Lescot, “Finite-dimensional sections of functions from fractional Sobolev classes on infinite-dimensional spaces”, Dokl. Math., 68:1 (2003), 71–74 | MR | Zbl

[4] Ambrosio L., Bruè E., Trevisan D., “Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $\mathrm {RCD}(K,\infty )$ spaces”, Adv. Math., 339 (2018), 426–452 | DOI | MR | Zbl

[5] Ambrosio L., Ghezzi R., “Sobolev and bounded variation functions on metric measure spaces”, Geometry, analysis and dynamics on sub-Riemannian manifolds, v. II, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2016, 211–273 | DOI | MR | Zbl

[6] Ambrosio L., Miranda M., Jr., Maniglia S., Pallara D., “$BV$ functions in abstract Wiener spaces”, J. Funct. Anal., 258:3 (2010), 785–813 | DOI | MR | Zbl

[7] Ambrosio L., Miranda M., Jr., Pallara D., “Some fine properties of $BV$ functions on Wiener spaces”, Anal. Geom. Metr. Spaces, 3 (2015), 212–230 | MR | Zbl

[8] Ambrosio L., Pinamonti A., Speight G., “Weighted Sobolev spaces on metric measure spaces”, J. reine angew. Math., 746 (2019), 39–65 | DOI | MR | Zbl

[9] Angiuli L., Ferrari S., Pallara D., “On functions of bounded variation on convex domains in Hilbert spaces”, J. Evol. Eqns., 21:3 (2021), 3449–3475 | DOI | MR | Zbl

[10] O. V. Besov, V. P. Il'in, and S. M. Nikolskii, Integral Representations of Functions and Imbedding Theorems, v. 1, 2, J. Wiley Sons, New York, 1978 | MR | MR | Zbl

[11] Bogachev V.I., Gaussian measures, Math. Surv. Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[12] Bogachev V.I., Measure theory, v. 1, 2, Springer, Berlin, 2007 | MR | Zbl

[13] Bogachev V.I., Differentiable measures and the Malliavin calculus, Math. Surv. Monogr., 164, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[14] Bogachev V.I., “Sobolev classes on infinite-dimensional spaces”, Geometric measure theory and real analysis, CRM Ser., 17, ed. by L. Ambrosio, Ed. Normale, Pisa, 2014, 1–56 | MR

[15] V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russ. Math. Surv., 71:4 (2016), 703–749 | DOI | DOI | MR | Zbl

[16] V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Russ. Math. Surv., 73:2 (2018), 191–260 | DOI | DOI | MR

[17] Bogachev V.I., “Distribution of polynomials in many variables and Nikolskii–Besov spaces”, Real Anal. Exch., 44:1 (2019), 49–64 | DOI | MR | Zbl

[18] V. I. Bogachev, “Pointwise conditions for membership of functions in weighted Sobolev classes”, Funct. Anal. Appl., 56:2 (2022), 86–100 | DOI | DOI | MR | Zbl

[19] V. I. Bogachev, E. D. Kosov, and S. N. Popova, “A characterization of Nikolskii–Besov classes via integration by parts”, Dokl. Math., 96:2 (2017), 449–453 | DOI | MR | Zbl

[20] V. I. Bogachev, E. D. Kosov, and S. N. Popova, “On Gaussian Nikolskii–Besov classes”, Dokl. Math., 96:2 (2017), 498–502 | DOI | MR | Zbl

[21] Bogachev V.I., Kosov E.D., Popova S.N., “A new approach to Nikolskii–Besov classes”, Moscow Math. J., 19:4 (2019), 619–654 | DOI | MR | Zbl

[22] Bogachev V.I., Kosov E.D., Shaposhnikov A.V., “Regularity of solutions to Kolmogorov equations with perturbed drifts”, Potential Anal., 58:4 (2023), 681–702 | DOI | MR | Zbl

[23] Bogachev V.I., Kosov E.D., Zelenov G.I., “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl

[24] Bogachev V.I., Krylov N.V., Röckner M., Shaposhnikov S.V., Fokker–Planck–Kolmogorov equations, Math. Surv. Monogr., 207, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[25] V. I. Bogachev, A. Yu. Pilipenko, and E. A. Rebrova, “Classes of functions of bounded variation on infinite-dimensional domains”, Dokl. Math., 88:1 (2013), 391–395 | DOI | MR | MR | Zbl

[26] Bogachev V.I., Pilipenko A.Yu., Shaposhnikov A.V., “Sobolev functions on infinite-dimensional domains”, J. Math. Anal. Appl., 419:2 (2014), 1023–1044 | DOI | MR | Zbl

[27] V. I. Bogachev and E. A. Rebrova, “Functions of bounded variation on infinite-dimensional spaces with measures”, Dokl. Math., 87:2 (2013), 144–147 | DOI | MR | MR | Zbl

[28] V. I. Bogachev and A. V. Shaposhnikov, “On extensions of Sobolev functions on the Wiener space”, Dokl. Math., 87:1 (2013), 58–61 | DOI | MR | Zbl

[29] V. I. Bogachev and O. G. Smolyanov, “Analytic properties of infinite-dimensional distributions”, Russ. Math. Surv., 45:3 (1990), 1–104 | DOI | MR | Zbl

[30] V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis, Moscow Lect., 4, Springer, Cham, 2020 | DOI | MR | Zbl

[31] V. I. Bogachev, G. I. Zelenov, and E. D. Kosov, “Membership of distributions of polynomials in the Nikolskii–Besov class”, Dokl. Math., 94:1 (2016), 453–457 | DOI | MR | Zbl

[32] Bojarski B., “Remarks on some geometric properties of Sobolev mappings”, Functional analysis and related topics: Proc. Int. Symp. (Sapporo, 1990), World Scientific, River Edge, NJ, 1991, 65–76 | MR | Zbl

[33] Celada P., Lunardi A., “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 266:4 (2014), 1948–1987 | DOI | MR | Zbl

[34] Da Prato G., Introduction to stochastic analysis and Malliavin calculus, Appunti. Sc. Norm. Super. Pisa (N.S.), 13, 3rd ed., Ed. Normale, Pisa, 2014 | MR | Zbl

[35] Da Prato G., Lunardi A., “$BV$ functions in Hilbert spaces”, Math. Ann., 381:3–4 (2021), 1653–1722 | DOI | MR | Zbl

[36] De Philippis G., Rindler F., “On the structure of $\mathcal {A}$-free measures and applications”, Ann. Math. Ser. 2, 184:3 (2016), 1017–1039 | DOI | MR | Zbl

[37] Di Marino S., Lučić D., Pasqualetto E., “A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space”, C. r. Math. Acad. sci. Paris, 358:7 (2020), 817–825 | MR | Zbl

[38] Di Marino S., Squassina M., “New characterizations of Sobolev metric spaces”, J. Funct. Anal., 276:6 (2019), 1853–1874 | DOI | MR | Zbl

[39] Frolov N.N., “Teoremy vlozheniya dlya prostranstv funktsii schetnogo chisla peremennykh. I”, Trudy NII matematiki Voronezhskogo universiteta, no. 1, Voronezh. un-t, Voronezh, 1970, 205–218

[40] N. N. Frolov, “Embedding theorems for functions of a countable number of variables and their application to the Dirichlet problem”, Sov. Math., Dokl., 13 (1972), 346–349 | MR | Zbl

[41] Fukushima M., “BV functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space”, J. Funct. Anal., 174:1 (2000), 227–249 | DOI | MR | Zbl

[42] Fukushima M., Hino M., “On the space of BV functions and a related stochastic calculus in infinite dimensions”, J. Funct. Anal., 183:1 (2001), 245–268 | DOI | MR | Zbl

[43] Geiss S., Toivola A., “On fractional smoothness and $L_p$-approximation on the Gaussian space”, Ann. Probab., 43:2 (2015), 605–638 | DOI | MR | Zbl

[44] Geiss S., Ylinen J., Decoupling on the Wiener space, related Besov spaces, and applications to BSDEs, Mem. AMS, 272, no. 1335, Amer. Math. Soc., Providence, RI, 2021 | MR

[45] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | DOI | MR | Zbl

[46] Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T., Sobolev spaces on metric measure spaces: An approach based on upper gradients, New Math. Monogr., 27, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl

[47] Hino M., “Dirichlet spaces on $H$-convex sets in Wiener space”, Bull. sci. math., 135:6–7 (2011), 667–683 | DOI | MR | Zbl

[48] Hu J., Ren J., “Infinite dimensional quasi continuity, path continuity and ray continuity of functions with fractional regularity”, J. math. pures appl. Sér. 9, 80:1 (2001), 131–152 ; Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | DOI | MR | Zbl

[49] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Libr., 24, North-Holland, Amsterdam, 1981 | MR | Zbl

[50] Imkeller P., Mastrolia T., Possama\"{ı} D., Réveillac A., “A note on the Malliavin–Sobolev spaces”, Stat. Probab. Lett., 109 (2016), 45–53 | DOI | MR | Zbl

[51] E. D. Kosov, “A characterization of Besov classes in terms of a new modulus of continuity”, Dokl. Math., 96:3 (2017), 587–590 | DOI | MR | Zbl

[52] E. D. Kosov, “Besov classes on a space with a Gaussian measure”, Dokl. Math., 97:1 (2018), 20–22 | DOI | MR | Zbl

[53] E. D. Kosov, “Besov classes on finite and infinite dimensional spaces”, Sb. Math., 210:5 (2019), 663–692 | DOI | DOI | MR | Zbl

[54] Kusuoka S., Stroock D.W., “Applications of the Malliavin calculus. I”, Stochastic analysis: Proc. Taniguchi Int. Symp. (Katata and Kyoto, 1982), North-Holland Math. Libr., 32, ed. by K. Itô, North-Holland, Amsterdam, 1984, 271–306 | DOI | MR | Zbl

[55] Lunardi A., Miranda M., Jr., Pallara D., “$BV$ functions on convex domains in Wiener spaces”, Potential Anal., 43:1 (2015), 23–48 | DOI | MR | Zbl

[56] Malliavin P., “Stochastic calculus of variation and hypoelliptic operators”, Proc. Int. Symp. on Stochastic Differential Equations (Kyoto, 1976), J. Wiley Sons, New York, 1978, 195–263 | MR

[57] Malliavin P., Stochastic analysis, Grundl. Math. Wiss., 313, Springer, Berlin, 2015 | MR

[58] Martín J., Milman M., Fractional Sobolev inequalities: Symmetrization, isoperimetry and interpolation, Astérisque, 366, Soc. math. France, Paris, 2014 | MR | Zbl

[59] Meyer P.A., “Note sur les processus d'Ornstein–Uhlenbeck”, Séminaire de probabilités XVI, 1980/81, Lect. Notes Math., 920, Springer, Berlin, 1982, 95–133 | DOI | MR

[60] Meyer P.A., “Quelques résultats analytiques sur le semi-groupe d'Ornstein–Uhlenbeck en dimension infinie”, Theory and application of random fields: Proc. IFIP-WG 7/1 Work. Conf. (Bangalore, India, 1982), Lect. Notes Control Inf. Sci., 49, Springer, Berlin, 1983, 201–214 | MR

[61] Meyer P.A., “Transformation de Riesz pour les lois gaussiennes”, Séminaire de probabilités XVIII, 1982/83, Lect. Notes Math., 1059, Springer, Berlin, 1984, 179–193 | DOI | MR

[62] E. V. Nikitin, “Fractional order Sobolev classes on infinite-dimensional spaces”, Dokl. Math., 88:2 (2013), 518–523 | DOI | MR | Zbl

[63] E. V. Nikitin, “Besov classes on infinite-dimensional spaces”, Math. Notes, 93:5–6 (2013), 936–939 | DOI | DOI | MR | Zbl

[64] E. V. Nikitin, “Comparison of two definitions of Besov classes on infinite-dimensional spaces”, Math. Notes, 95:1–2 (2014), 133–135 | DOI | DOI | MR | Zbl

[65] Nualart D., The Malliavin calculus and related topics, 2nd ed., Springer, Berlin, 2006 | MR | Zbl

[66] S. V. Pavlov, “Grand Sobolev spaces on metric measure spaces”, Sib. Math. J., 63:5 (2022), 956–966 | DOI | MR | Zbl

[67] Pineda E., Urbina W., “Some results on Gaussian Besov–Lipschitz spaces and Gaussian Triebel–Lizorkin spaces”, J. Approx. Theory., 161:2 (2009), 529–564 | DOI | MR | Zbl

[68] Ren J., Röckner M., “Ray Hölder-continuity for fractional Sobolev spaces in infinite dimensions and applications”, Probab. Theory Relat. Fields, 117:2 (2000), 201–220 | DOI | MR | Zbl

[69] Shaposhnikov A., “A note on Lusin-type approximation of Sobolev functions on Gaussian spaces”, J. Funct. Anal., 280:6 (2021), 108917 | DOI | MR | Zbl

[70] Shigekawa I., “Derivatives of Wiener functionals and absolute continuity of induced measures”, J. Math. Kyoto Univ., 20:2 (1980), 263–289 | MR | Zbl

[71] Shigekawa I., Stochastic analysis, Transl. Math. Monogr., 224, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[72] Sugita H., “Sobolev spaces of Wiener functionals and Malliavin's calculus”, J. Math. Kyoto Univ., 25:1 (1985), 31–48 | MR | Zbl

[73] Sugita H., “On a characterization of the Sobolev spaces over an abstract Wiener space”, J. Math. Kyoto Univ., 25:4 (1985), 717–725 | MR | Zbl

[74] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, Deutscher Verl. Wiss., Berlin, 1978 | MR | Zbl

[75] Urbina-Romero W., Gaussian harmonic analysis, Springer, Cham, 2019 | MR | Zbl

[76] S. K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Sib. Math. J., 37:6 (1996), 1113–1136 | DOI | MR | Zbl

[77] Watanabe S., Lectures on stochastic differential equations and Malliavin calculus, Lect. Math. Phys. Math. Tata Inst. Fundam. Res., 73, Springer, Berlin, 1984 | MR | Zbl

[78] Watanabe S., “Fractional order Sobolev spaces on Wiener space”, Probab. Theory Related Fields, 95:2 (1993), 175–198 | DOI | MR | Zbl

[79] V. V. Zhikov, “Weighted Sobolev spaces”, Sb. Math., 189:8 (1998), 1139–1170 | DOI | DOI | MR | Zbl

[80] V. V. Zhikov, “Density of smooth functions in weighted Sobolev spaces”, Dokl. Math., 88:3 (2013), 669–673 | DOI | MR | Zbl

[81] V. V. Zhikov and M. D. Surnachev, “On density of smooth functions in weighted Sobolev spaces with variable exponents”, St. Petersburg Math. J., 27:3 (2016), 415–436 | DOI | MR | Zbl