Truncations and Compositions in Function Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 224-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with some recent assertions about truncations $f\mapsto |f|$ and compositions $f\mapsto g\circ f$ in the spaces $A^s_{p,q}(\mathbb R^n)$, $A\in \{B,F\}$.
Keywords: function spaces, truncations
Mots-clés : compositions.
@article{TM_2023_323_a13,
     author = {Hans Triebel},
     title = {Truncations and {Compositions} in {Function} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--251},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a13/}
}
TY  - JOUR
AU  - Hans Triebel
TI  - Truncations and Compositions in Function Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 224
EP  - 251
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_323_a13/
LA  - ru
ID  - TM_2023_323_a13
ER  - 
%0 Journal Article
%A Hans Triebel
%T Truncations and Compositions in Function Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 224-251
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_323_a13/
%G ru
%F TM_2023_323_a13
Hans Triebel. Truncations and Compositions in Function Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 224-251. http://geodesic.mathdoc.fr/item/TM_2023_323_a13/

[1] Bergh J., Löfström J., Interpolation spaces: An introduction, Grundl. Math. Wiss., 223, Springer, Berlin, 1976 | Zbl

[2] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. 1, 2, 1st ed., J. Wiley Sons, New York, 1978 | MR | MR | Zbl

[3] Bourdaud G., Moussai M., Sickel W., “Composition operators on Lizorkin–Triebel spaces”, J. Funct. Anal., 259:5 (2010), 1098–1128 | DOI | MR | Zbl

[4] Bourdaud G., Moussai M., Sickel W., “Composition operators acting on Besov spaces on the real line”, Ann. Mat. Pura Appl., 193:5 (2014), 1519–1554 | DOI | MR | Zbl

[5] Bourdaud G., Moussai M., Sickel W., “A necessary condition for composition in Besov spaces”, Complex Var. Elliptic Eqns., 65:1 (2020), 22–39 | DOI | MR | Zbl

[6] Bourdaud G., Sickel W., “Composition operators on function spaces with fractional order of smoothness”, RIMS Kôkyûroku Bessatsu, B26 (2011), 93–132 | MR | Zbl

[7] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Grundl. Math. Wiss., 224, Springer, Berlin, 1977 | MR | Zbl

[8] Kateb D., “Fonctions qui operent sur les espaces de Besov”, Proc. Amer. Math. Soc., 128:3 (2000), 735–743 | DOI | MR | Zbl

[9] Mironescu P., Van Schaftingen J., “Lifting in compact covering spaces for fractional Sobolev mappings”, Anal. PDE, 14:6 (2021), 1851–1871 | DOI | MR | Zbl

[10] Moussai M., “Composition operators on Besov spaces in the limiting case $s=1+1/p$”, Stud. math., 241:1 (2018), 1–15 | DOI | MR | Zbl

[11] Musina R., Nazarov A.I., “A note on truncations in fractional Sobolev spaces”, Bull. Math. Sci., 9:1 (2019), 1950001 | DOI | MR | Zbl

[12] S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Grundl. Math. Wiss., 205, Springer, Berlin, 1975 | MR | Zbl

[13] Runst T., Sickel W., Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Ser. Nonlinear Anal. Appl., 3, W. de Gruyter, Berlin, 1996 | MR | Zbl

[14] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Transl. Math. Monogr., 90, Am. Math. Soc., Providence, RI, 1991 ; Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | MR | Zbl

[15] H. Triebel, Theory of Function Spaces, Monogr. Math., 78, Birkhäuser, Basel, 1983 | MR | Zbl

[16] Triebel H., “Local approximation spaces”, Z. Anal. Anwend., 8:3 (1989), 261–288 | DOI | MR | Zbl

[17] Triebel H., Theory of function spaces II, Monogr. Math., 84, Birkhäuser, Basel, 1992 | MR | Zbl

[18] Triebel H., The structure of functions, Monogr. Math., 97, Birkhäuser, Basel, 2001 | MR | Zbl

[19] Triebel H., Bases in function spaces, sampling, discrepancy, numerical integration, EMS Tracts Math., 11, Eur. Math. Soc., Zürich, 2010 | MR | Zbl

[20] Triebel H., Faber systems and their use in sampling, discrepancy, numerical integration, Eur. Math. Soc., Zürich, 2012 | MR | Zbl

[21] Triebel H., Hybrid function spaces, heat and Navier–Stokes equations, EMS Tracts Math., 24, Eur. Math. Soc., Zürich, 2015 | MR | Zbl

[22] Triebel H., Tempered homogeneous function spaces, Eur. Math. Soc., Zürich, 2015 | MR | Zbl

[23] Triebel H., Function spaces with dominating mixed smoothness, Eur. Math. Soc., Zürich, 2019 | MR | Zbl

[24] Triebel H., Theory of function spaces IV, Monogr. Math., 107, Birkhäuser, Cham, 2020 | DOI | MR | Zbl

[25] Van Schaftingen J., “Reverse superposition estimates in Sobolev spaces”, Pure Appl. Funct. Anal., 7:2 (2020), 805–811 | MR

[26] Ziemer W.P., Weakly differentiable functions, Grad. Texts Math., 120, Springer, New York, 1989 | DOI | MR | Zbl