Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_323_a12, author = {V. N. Temlyakov}, title = {On {Universal} {Sampling} {Recovery} in the {Uniform} {Norm}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {213--223}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a12/} }
V. N. Temlyakov. On Universal Sampling Recovery in the Uniform Norm. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 213-223. http://geodesic.mathdoc.fr/item/TM_2023_323_a12/
[1] Binev P., Cohen A., Dahmen W., DeVore R., Temlyakov V., “Universal algorithms for learning theory. I: Piecewise constant functions”, J. Mach. Learn. Res., 6 (2005), 1297–1321 | MR | Zbl
[2] F. Dai, A. Prymak, V. N. Temlyakov, and S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russ. Math. Surv., 74:4 (2019), 579–630 | DOI | DOI | MR
[3] Dai F., Temlyakov V., “Universal sampling discretization”, Constr. Approx., 58:3 (2023), 589–613 ; arXiv: 2107.11476v1 [math.FA] | DOI | MR
[4] Dai F., Temlyakov V., Universal discretization and sparse sampling recovery, E-print, 2023, arXiv: 2301.05962v1 [math.NA] | MR
[5] Dai F., Temlyakov V., “Random points are good for universal discretization”, J. Math. Anal. Appl., 529:1 (2024), 127570 ; arXiv: 2301.12536v1 [math.FA] | DOI | MR
[6] Györfy L., Kohler M., Krzyżak A., Walk H., A distribution-free theory of nonparametric regression, Springer, New York, 2002
[7] Jahn T., Ullrich T., Voigtlaender F., “Sampling numbers of smoothness classes via $\ell ^1$-minimization”, J. Complexity, 79 (2023), 101786 ; arXiv: 2212.00445v1 [math.NA] | DOI | MR
[8] Kashin B., Konyagin S., Temlyakov V., “Sampling discretization of the uniform norm”, Constr. Approx., 57:2 (2023), 663–694 ; arXiv: 2104.01229v2 [math.NA] | DOI | MR | Zbl
[9] Kashin B., Kosov E., Limonova I., Temlyakov V., “Sampling discretization and related problems”, J. Complexity, 71 (2022), 101653 ; arXiv: 2109.07567v1 [math.FA] | DOI | MR | Zbl
[10] Niederreiter H., Xing C., “Low-discrepancy sequences and global function fields with many rational places”, Finite Fields Appl., 2:3 (1996), 241–273 | DOI | MR | Zbl
[11] V. N. Temlyakov, “Approximation by elements of a finite-dimensional subspace of functions from various Sobolev or Nikol'skii spaces”, Math. Notes, 43:6 (1988), 444–454 | DOI | MR | Zbl
[12] V. N. Temlyakov, “On universal cubature formulas”, Sov. Math., Dokl., 43:1 (1991), 39–42 | MR | Zbl
[13] V. N. Temlyakov, “On universal estimators in learning theory”, Proc. Steklov Inst. Math., 255 (2006), 244–259 | DOI | MR | Zbl
[14] Temlyakov V., Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl
[15] Temlyakov V.N., “Universal discretization”, J. Complexity, 47 (2018), 97–109 | DOI | MR
[16] Temlyakov V., “On optimal recovery in $L_2$”, J. Complexity, 65 (2021), 101545 ; arXiv: 2010.03103v1 [math.NA] | DOI | MR | Zbl
[17] Temlyakov V., “On universal sampling representation”, Pure Appl. Funct. Anal., 8:2 (2023), 627–645 ; arXiv: 2201.00415v1 [math.NA] | MR | Zbl
[18] A. Zygmund, Trigonometric Series, v. 1, Univ. Press, Cambridge, 1959 | MR | Zbl