On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the zero smoothness Besov space $B_{p,q}^{0,1}$ does not embed into the Lorentz space $L_{p,q}$ unless $p=q$; here $p,q\in (1,\infty )$. This answers in the negative a question posed by O. V. Besov.
Mots-clés : Besov space
Keywords: embedding theorem.
@article{TM_2023_323_a11,
     author = {D. M. Stolyarov},
     title = {On {Embedding} of {Besov} {Spaces} of {Zero} {Smoothness} into {Lorentz} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {204--212},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a11/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 204
EP  - 212
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_323_a11/
LA  - ru
ID  - TM_2023_323_a11
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 204-212
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_323_a11/
%G ru
%F TM_2023_323_a11
D. M. Stolyarov. On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212. http://geodesic.mathdoc.fr/item/TM_2023_323_a11/