Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_323_a11, author = {D. M. Stolyarov}, title = {On {Embedding} of {Besov} {Spaces} of {Zero} {Smoothness} into {Lorentz} {Spaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {204--212}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a11/} }
D. M. Stolyarov. On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212. http://geodesic.mathdoc.fr/item/TM_2023_323_a11/
[1] O. V. Besov, “Investigation of a family of function spaces in connection with theorems of imbedding and extension”, Am. Math. Soc. Transl., Ser. 2,, 40 (1964), 85–126 | Zbl | Zbl
[2] O. V. Besov, “On spaces of functions of smoothness zero”, Sb. Math., 203:8 (2012), 1077–1090 | DOI | DOI | MR | MR | Zbl
[3] O. V. Besov, “To the Sobolev embedding theorem for the limiting exponent”, Proc. Steklov Inst. Math., 284 (2014), 81–96 | DOI | DOI | MR | MR | Zbl
[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl
[5] Caetano A.M., Gogatishvili A., Opic B., “Sharp embeddings of Besov spaces involving only logarithmic smoothness”, J. Approx. Theory, 152:2 (2008), 188–214 | DOI | MR | Zbl
[6] Caetano A.M., Gogatishvili A., Opic B., “Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness”, J. Approx. Theory, 163:10 (2011), 1373–1399 | DOI | MR | Zbl
[7] Cobos F., Dom\'{ı}nguez Ó., “Approximation spaces, limiting interpolation and Besov spaces”, J. Approx. Theory, 189 (2015), 43–66 | DOI | MR | Zbl
[8] Cobos F., Dom\'{ı}nguez Ó., “On Besov spaces of logarithmic smoothness and Lipschitz spaces”, J. Math. Anal. Appl., 425:1 (2015), 71–84 | DOI | MR | Zbl
[9] Dom\'{ı}nguez O., Tikhonov S., Function spaces of logarithmic smoothness: Embeddings and characterizations, Mem. AMS, 282, no. 1393, Amer. Math. Soc., Providence, RI, 2023 | MR
[10] M. L. Goldman, “On imbedding generalized Nikol'skii–Besov spaces in Lorentz spaces”, Proc. Steklov Inst. Math., 172 (1987), 143–154 | MR | Zbl | Zbl
[11] Goldman M.L., “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, The interaction of analysis and geometry: Int. Sch.-Conf. on Analysis and Geometry, Novosibirsk, 2004, Contemp. Math., 424, Am. Math. Soc., Providence, RI, 2007, 53–81 | DOI | MR | Zbl
[12] Grafakos L., Modern Fourier analysis, Grad. Texts Math., 250, Springer, New York, 2009 | DOI | MR | Zbl
[13] Hernandez F., Raiţă B., Spector D., “Endpoint $L^1$ estimates for Hodge systems”, Math. Ann., 385:3–4 (2023), 1923–1946 | DOI | MR | Zbl
[14] Yu. V. Netrusov, “Imbedding theorems of Besov spaces in Banach lattices”, J. Sov. Math., 47:6 (1989), 2871–2881 | DOI | MR | Zbl | Zbl
[15] Peetre J., New thoughts on Besov spaces, Math. Dept., Duke Univ., Durham, 1976 | MR | Zbl
[16] Seeger A., Trebels W., “Embeddings for spaces of Lorentz–Sobolev type”, Math. Ann., 373:3–4 (2019), 1017–1056 | DOI | MR | Zbl
[17] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[18] D. M. Stolyarov, “Hardy–Littlewood–Sobolev inequality for $p=1$”, Sb. Math., 213:6 (2022), 844–889 | DOI | DOI | MR