Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_322_a19, author = {A. P. Chugainova and R. R. Polekhina}, title = {Nonuniqueness of a {Self-similar} {Solution} to the {Riemann} {Problem} for {Elastic} {Waves} in {Media} with a {Negative} {Nonlinearity} {Parameter}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {251--265}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_322_a19/} }
TY - JOUR AU - A. P. Chugainova AU - R. R. Polekhina TI - Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 251 EP - 265 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_322_a19/ LA - ru ID - TM_2023_322_a19 ER -
%0 Journal Article %A A. P. Chugainova %A R. R. Polekhina %T Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 251-265 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2023_322_a19/ %G ru %F TM_2023_322_a19
A. P. Chugainova; R. R. Polekhina. Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern Methods of Mechanics, Tome 322 (2023), pp. 251-265. http://geodesic.mathdoc.fr/item/TM_2023_322_a19/
[1] A. I. Akhiezer, G. Ia. Liubarskii, and R. V. Polovin, “The stability of shock waves in magnetohydrodynamics”, Sov. Phys. JETP, 8:3 (1959), 507–511 | MR | Zbl
[2] D. R. Bland, Nonlinear Dynamic Elasticity, Blaisdell, Waltham, MA, 1969 | MR | Zbl
[3] A. P. Chugainova, “The formation of a selfsimilar solution for the problem of non-linear waves in an elastic half-space”, J. Appl. Math. Mech., 52:4 (1988), 541–545 | DOI | MR
[4] A. P. Chugainova, “The interaction of non-linear waves in a slightly anisotropic viscoelastic medium”, J. Appl. Math. Mech., 57:2 (1993), 375–381 | DOI | MR | Zbl
[5] Chugainova A.P., Il'ichev A.T., Kulikovskii A.G., Shargatov V.A., “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | MR | Zbl
[6] Chugainova A.P., Polekhina R.R., “The effect of small-scale processes in the structure of discontinuities on the solution of the Riemann problem”, Wave Motion, 114 (2022), 102996 | DOI | MR
[7] V. F. D'jačenko, “Cauchy's problem for quasi-linear systems”, Sov. Math., Dokl., 2 (1961), 7–8 | MR | Zbl
[8] G. Ya. Galin, “Shock waves in media with arbitrary equations of state”, Sov. Phys., Dokl., 3 (1958), 244–247 | MR | Zbl
[9] G. Ya. Galin, “A theory of shock waves”, Sov. Phys., Dokl., 4 (1960), 757–760 | MR | Zbl
[10] A. G. Kulikovskii, “Equations describing the propagation of non-linear quasitransverse waves in a weakly non-isotropic elastic body”, J. Appl. Math. Mech., 50:4 (1986), 455–461 | DOI | Zbl
[11] A. G. Kulikovskii and A. P. Chugainova, “Disintegration conditions for a nonlinear wave in a viscoelastic medium”, Comput. Math. Math. Phys., 38:2 (1998), 305–312 | MR | Zbl
[12] A. G. Kulikovskii and A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44:6 (2004), 1062–1068 | MR | Zbl
[13] A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russ. Math. Surv., 63:2 (2008), 283–350 | DOI | DOI | MR | Zbl
[14] A. G. Kulikovskii, A. P. Chugainova, and V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity”, Comput. Math. Math. Phys., 56:7 (2016), 1355–1362 | DOI | MR | Zbl
[15] A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 118, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl
[16] A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[17] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon Press, Oxford, 1987 | MR | Zbl
[18] Lax P.D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[19] O. A. Oleĭnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Am. Math. Soc. Transl., Ser. 2, 33 (1963), 285–290 | MR | Zbl | Zbl
[20] L. I. Sedov, Mechanics of Continuous Media, v. 1, World Scientific, River Edge, NJ, 1997 | MR | MR | Zbl
[21] Toro E.F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, Springer, Berlin, 2009 | MR | Zbl
[22] N. D. Vvedenskaya, “An example of nonuniqueness of a generalized solution of a quasilinear system of equations”, Sov. Math., Dokl., 2 (1961), 89–90 | MR | Zbl