@article{TM_2023_321_a9,
author = {S. E. Zhukovskiy and K. V. Storozhuk},
title = {On {Smooth} {Functions} {That} {Are} {Even} on the {Boundary} of a {Ball}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {156--161},
year = {2023},
volume = {321},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a9/}
}
S. E. Zhukovskiy; K. V. Storozhuk. On Smooth Functions That Are Even on the Boundary of a Ball. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 156-161. http://geodesic.mathdoc.fr/item/TM_2023_321_a9/
[1] M. A. Krasnosel'skiy, A. I. Perov, A. I. Povolotskiy, and P. P. Zabreiko, Plane Vector Fields, Academic Press, New York, 1966 | MR | Zbl
[2] Zabreiko P.P., Krivko-Krasko A.V., “Obobschenie teorem Rollya i Darbu dlya funktsii dvukh peremennykh”, Vestsi Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 54:3 (2018), 290–299 | MR
[3] E. A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Sb. Math., 190:3 (1999), 349–405 | DOI | DOI | MR | Zbl
[4] Dombrowski P., “On global solutions for partial differential equations of first order”, Bull. Amer. Math. Soc., 67 (1961), 202–205 | DOI | MR | Zbl
[5] Francis G.K., “The folded ribbon theorem. A contribution to the study of immersed circles”, Trans. Amer. Math. Soc., 141 (1969), 271–303 | DOI | MR | Zbl