Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_321_a9, author = {S. E. Zhukovskiy and K. V. Storozhuk}, title = {On {Smooth} {Functions} {That} {Are} {Even} on the {Boundary} of a {Ball}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {156--161}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a9/} }
TY - JOUR AU - S. E. Zhukovskiy AU - K. V. Storozhuk TI - On Smooth Functions That Are Even on the Boundary of a Ball JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 156 EP - 161 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a9/ LA - ru ID - TM_2023_321_a9 ER -
S. E. Zhukovskiy; K. V. Storozhuk. On Smooth Functions That Are Even on the Boundary of a Ball. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 156-161. http://geodesic.mathdoc.fr/item/TM_2023_321_a9/