Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_321_a8, author = {V. Jurdjevic}, title = {Lie {Algebras} and {Integrable} {Systems:} {Elastic} {Curves} and {Rolling} {Geodesics}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {128--155}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a8/} }
TY - JOUR AU - V. Jurdjevic TI - Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 128 EP - 155 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a8/ LA - ru ID - TM_2023_321_a8 ER -
V. Jurdjevic. Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 128-155. http://geodesic.mathdoc.fr/item/TM_2023_321_a8/
[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[2] A. V. Bolsinov, “A completeness criterion for a family of functions in involution constructed by the argument shift method”, Sov. Math., Dokl., 38 (1989), 161–165 | MR | Zbl
[3] Bryant R.L., Hsu L., “Rigidity of integral curves of rank 2 distributions”, Invent. math., 114 (1993), 435–461 | DOI | MR | Zbl
[4] Chitour Y., Godoy Molina M., Kokkonen P., “The rolling problem: Overview and challenges”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, 103–122 | DOI | MR | Zbl
[5] Chitour Y., Kokkonen P., Rolling manifolds: Intrinsic formulation and controllability, E-print, 2011, arXiv: 1011.2925v2 [math.DG] | Zbl
[6] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York, 1978 | MR | Zbl
[7] Jurdjevic V., “The geometry of the plate–ball problem”, Arch. Ration. Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl
[8] Jurdjevic V., “Non-Euclidean elastica”, Amer. J. Math., 117:1 (1995), 93–124 | DOI | MR | Zbl
[9] Jurdjevic V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[10] Jurdjevic V., Integrable Hamiltonian systems on complex Lie groups, Mem. AMS, 178, no. 838, Amer. Math. Soc., Providence, RI, 2005 | MR
[11] Jurdjevic V., Optimal control and geometry: Integrable systems, Cambridge Stud. Adv. Math., 154, Cambridge Univ. Press, Cambridge, 2016 | MR | Zbl
[12] Jurdjevic V., “Affine–quadratic problems on Lie groups: Tops and integrable systems”, J. Lie Theory, 30:2 (2020), 425–444 | MR | Zbl
[13] Jurdjevic V., “Kowalewski top and complex Lie algebras”, Anal. Math. Phys., 11:4 (2021), 173 | DOI | MR | Zbl
[14] Jurdjevic V., Markina I., Silva Leite F., “Symmetric spaces rolling on flat spaces”, J. Geom. Anal., 33:3 (2023), 94 | DOI | MR | Zbl
[15] Jurdjevic V., Zimmerman J., “Rolling sphere problems on spaces of constant curvature”, Math. Proc. Cambridge Philos. Soc., 144:3 (2008), 729–747 | DOI | MR | Zbl
[16] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure Appl. Math., 103, Academic Press, New York, 1983 | MR | Zbl
[17] A. G. Reyman, “Integrable Hamiltonian systems connected with graded Lie algebras”, J. Sov. Math., 19 (1982), 1507–1545 | DOI | MR | Zbl | Zbl
[18] A. G. Reyman and M. A. Semenov-Tian-Shansky, “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems VII: Integrable Systems. Nonholonomic Dynamical Systems, Encycl. Math. Sci., 16, Springer, Berlin, 1994, 116–225 | MR
[19] Silva Leite F., Louro F., “Sphere rolling on sphere: Alternative approach to kinematics and constructive proof of controllability”, Dynamics, games and science: Proc. Int. Conf. and Adv. Sch. Planet Earth, DGS II (Portugal, 2013), CIM Ser. Math. Sci., 1, Springer, Cham, 2015, 341–356 | DOI | MR
[20] Wolf J.A., Spaces of constant curvature, 4th ed., Publish or Perish, Berkeley, CA, 1977 | MR