Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 128-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper follows a long-standing fascination in the relevance of Lie algebras and Lie groups for problems of applied mathematics. It originates with the discovery that the mathematical formalism initiated by G. Kirchhoff to model the equilibrium configurations of an elastic rod can be extended to the isometry groups of certain Riemannian manifolds through control theoretic insights and the Maximum Principle, giving rise to a large class of Hamiltonian systems that link geometry with physics in novel ways. This paper focuses on the relations between the Kirchhoff-like affine–quadratic problem and the rolling geodesic problem associated with the rollings of homogeneous manifolds $G/K$, equipped with a $G$-invariant metric, on their tangent spaces. We will show that there is a remarkable connection between these two problems manifested through a common isospectral curve in the Lie algebra $\mathfrak g$ of $G$. In the process we will reveal the significance of curvature for the theory of elastic curves.
@article{TM_2023_321_a8,
     author = {V. Jurdjevic},
     title = {Lie {Algebras} and {Integrable} {Systems:} {Elastic} {Curves} and {Rolling} {Geodesics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {128--155},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a8/}
}
TY  - JOUR
AU  - V. Jurdjevic
TI  - Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 128
EP  - 155
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a8/
LA  - ru
ID  - TM_2023_321_a8
ER  - 
%0 Journal Article
%A V. Jurdjevic
%T Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 128-155
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a8/
%G ru
%F TM_2023_321_a8
V. Jurdjevic. Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 128-155. http://geodesic.mathdoc.fr/item/TM_2023_321_a8/

[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl

[2] A. V. Bolsinov, “A completeness criterion for a family of functions in involution constructed by the argument shift method”, Sov. Math., Dokl., 38 (1989), 161–165 | MR | Zbl

[3] Bryant R.L., Hsu L., “Rigidity of integral curves of rank 2 distributions”, Invent. math., 114 (1993), 435–461 | DOI | MR | Zbl

[4] Chitour Y., Godoy Molina M., Kokkonen P., “The rolling problem: Overview and challenges”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, 103–122 | DOI | MR | Zbl

[5] Chitour Y., Kokkonen P., Rolling manifolds: Intrinsic formulation and controllability, E-print, 2011, arXiv: 1011.2925v2 [math.DG] | Zbl

[6] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York, 1978 | MR | Zbl

[7] Jurdjevic V., “The geometry of the plate–ball problem”, Arch. Ration. Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl

[8] Jurdjevic V., “Non-Euclidean elastica”, Amer. J. Math., 117:1 (1995), 93–124 | DOI | MR | Zbl

[9] Jurdjevic V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[10] Jurdjevic V., Integrable Hamiltonian systems on complex Lie groups, Mem. AMS, 178, no. 838, Amer. Math. Soc., Providence, RI, 2005 | MR

[11] Jurdjevic V., Optimal control and geometry: Integrable systems, Cambridge Stud. Adv. Math., 154, Cambridge Univ. Press, Cambridge, 2016 | MR | Zbl

[12] Jurdjevic V., “Affine–quadratic problems on Lie groups: Tops and integrable systems”, J. Lie Theory, 30:2 (2020), 425–444 | MR | Zbl

[13] Jurdjevic V., “Kowalewski top and complex Lie algebras”, Anal. Math. Phys., 11:4 (2021), 173 | DOI | MR | Zbl

[14] Jurdjevic V., Markina I., Silva Leite F., “Symmetric spaces rolling on flat spaces”, J. Geom. Anal., 33:3 (2023), 94 | DOI | MR | Zbl

[15] Jurdjevic V., Zimmerman J., “Rolling sphere problems on spaces of constant curvature”, Math. Proc. Cambridge Philos. Soc., 144:3 (2008), 729–747 | DOI | MR | Zbl

[16] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure Appl. Math., 103, Academic Press, New York, 1983 | MR | Zbl

[17] A. G. Reyman, “Integrable Hamiltonian systems connected with graded Lie algebras”, J. Sov. Math., 19 (1982), 1507–1545 | DOI | MR | Zbl | Zbl

[18] A. G. Reyman and M. A. Semenov-Tian-Shansky, “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems VII: Integrable Systems. Nonholonomic Dynamical Systems, Encycl. Math. Sci., 16, Springer, Berlin, 1994, 116–225 | MR

[19] Silva Leite F., Louro F., “Sphere rolling on sphere: Alternative approach to kinematics and constructive proof of controllability”, Dynamics, games and science: Proc. Int. Conf. and Adv. Sch. Planet Earth, DGS II (Portugal, 2013), CIM Ser. Math. Sci., 1, Springer, Cham, 2015, 341–356 | DOI | MR

[20] Wolf J.A., Spaces of constant curvature, 4th ed., Publish or Perish, Berkeley, CA, 1977 | MR