Typical Occurrence of Self-oscillations in an Ocean Circulation Box Model with Turbulent Fluxes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 118-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a model of temperature–salinity ocean circulation whose dynamics is governed by a two-dimensional system of ordinary differential equations with a discontinuous transfer function depending on parameters, we describe generic bifurcations of birth of several self-oscillating modes when the parameters of the transfer function vary; we also find the corresponding bifurcation diagrams in the parameter space.
@article{TM_2023_321_a7,
     author = {A. A. Davydov and S. O. Zosimov},
     title = {Typical {Occurrence} of {Self-oscillations} in an {Ocean} {Circulation} {Box} {Model} with {Turbulent} {Fluxes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {118--127},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - S. O. Zosimov
TI  - Typical Occurrence of Self-oscillations in an Ocean Circulation Box Model with Turbulent Fluxes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 118
EP  - 127
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a7/
LA  - ru
ID  - TM_2023_321_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%A S. O. Zosimov
%T Typical Occurrence of Self-oscillations in an Ocean Circulation Box Model with Turbulent Fluxes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 118-127
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a7/
%G ru
%F TM_2023_321_a7
A. A. Davydov; S. O. Zosimov. Typical Occurrence of Self-oscillations in an Ocean Circulation Box Model with Turbulent Fluxes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 118-127. http://geodesic.mathdoc.fr/item/TM_2023_321_a7/

[1] V. I. Arnold, Ordinary Differential Equations, Springer, Berlin, 1992 | MR | Zbl

[2] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, \textup {Vol. 1:} Classification of Critical Points, Caustics and Wave Fronts; \textup {Vol. 2:} Monodromy and Asymptotics of Integrals, Birkhäuser, Boston, 2012 | MR

[3] A. A. Davydov, “Singularities of fields of limiting directions of two-dimensional control systems”, Math. USSR, Sb., 64:2 (1989), 471–493 | DOI | MR | Zbl

[4] A. A. Davydov, “Local controllability of typical dynamical inequalities on surfaces”, Proc. Steklov Inst. Math., 209 (1995), 73–106 | MR | Zbl

[5] A. A. Davydov and N. B. Melnikov, “Soft loss of stability in an ocean circulation box model with turbulent fluxes”, Proc. Steklov Inst. Math., 259 (2007), 6–15 | DOI | MR | Zbl

[6] A. A. Davydov and N. B. Melnikov, “Andronov–Hopf bifurcation in simple double diffusion models”, Russ. Math. Surv., 62:2 (2007), 382–384 | DOI | DOI | MR | Zbl

[7] Dufour J.P., “Stabilité simultanée de deux fonctions différentiables”, Ann. Inst. Fourier, 29:1 (1979), 263–282 | DOI | MR | Zbl

[8] Ecalle J., “Les fonctions résurgentes et leurs applications à l'analyse harmonique sur certains groupes”, Séminaire d'analyse, Publ. Math. Orsay, 78-12, Univ. Paris-Sud, Orsay, 1981, 10–37 | MR

[9] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Grad. Texts Math., 14, Springer, New York, 1973 | DOI | MR | Zbl

[10] Keane A., Pohl A., Dijkstra H.A., Ridgwell A., A simple mechanism for stable oscillations in an intermediate complexity Earth System Model, E-print, 2022, arXiv: 2201.07883v2 [math.DS] | Zbl

[11] Keller K., McInerney D., “The dynamics of learning about a climate threshold”, Clim. Dyn., 30:2–3 (2008), 321–332 | DOI

[12] Manabe S., Stouffer R.J., “The role of thermohaline circulation in climate”, Tellus B: Chem. Phys. Meteorol., 51:1 (1999), 91–109 | DOI

[13] Marotzke J., “Abrupt climate change and thermohaline circulation: Mechanisms and predictability”, Proc. Natl. Acad. Sci., 97:4 (2000), 1347–1350 | DOI

[14] Marotzke J., Welander P., Willebrand J., “Instability and multiple steady states in a meridional-plane model of the thermohaline circulation”, Tellus A: Dyn. Meteorol. Oceanogr., 40:2 (1988), 162–172 | DOI

[15] Titz S., Kuhlbrodt T., Feudel U., “Homoclinic bifurcation in an ocean circulation box model”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 12:4 (2002), 869–875 | DOI

[16] S. M. Voronin, “Analytic classification of pairs of involutions and its applications”, Funct. Anal. Appl., 16:2 (1982), 94–100 | DOI | MR | Zbl

[17] Welander P.A., “A simple heat–salt oscillator”, Dyn. Atmos. Oceans, 6:4 (1982), 233–242 | DOI