Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_321_a4, author = {Lucas Brivadis and Jean-Paul Gauthier and Ludovic Sacchelli}, title = {Output {Feedback} {Stabilization} of {Non-uniformly} {Observable} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {77--93}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a4/} }
TY - JOUR AU - Lucas Brivadis AU - Jean-Paul Gauthier AU - Ludovic Sacchelli TI - Output Feedback Stabilization of Non-uniformly Observable Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 77 EP - 93 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a4/ LA - ru ID - TM_2023_321_a4 ER -
%0 Journal Article %A Lucas Brivadis %A Jean-Paul Gauthier %A Ludovic Sacchelli %T Output Feedback Stabilization of Non-uniformly Observable Systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 77-93 %V 321 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2023_321_a4/ %G ru %F TM_2023_321_a4
Lucas Brivadis; Jean-Paul Gauthier; Ludovic Sacchelli. Output Feedback Stabilization of Non-uniformly Observable Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 77-93. http://geodesic.mathdoc.fr/item/TM_2023_321_a4/
[1] Ajami A., Brouche M., Gauthier J.-P., Sacchelli L., “Output stabilization of military UAV in the unobservable case”, 2020 IEEE Aerospace Conf., IEEE, 2020, 1–6
[2] Ajami A., Gauthier J.-P., Sacchelli L., “Dynamic output stabilization of control systems: An unobservable kinematic drone model”, Automatica, 125 (2021), 109383 | DOI | MR | Zbl
[3] Andrieu V., Praly L., “A unifying point of view on output feedback designs for global asymptotic stabilization”, Automatica, 45:8 (2009), 1789–1798 | DOI | MR | Zbl
[4] Bacciotti A., “Constant feedback stabilizability of bilinear systems”, Realization and modelling in system theory, Math. Theory Networks Syst., MTNS-89, Proc. Int. Symp. (Amsterdam, 1989), v. 1, Prog. Syst. Control Theory, 3, Birkhäuser, Boston, 1990, 357–367 | MR
[5] Barut A.O., Raczka R., Theory of group representations and applications, 2nd ed., World Scientific, Singapore, 1986 | MR | Zbl
[6] Brivadis L., Andrieu V., Serres U., Gauthier J.-P., “Luenberger observers for infinite-dimensional systems, back and forth nudging, and application to a crystallization process”, SIAM J. Control Optim., 59:2 (2021), 857–886 | DOI | MR | Zbl
[7] Brivadis L., Gauthier J.-P., Sacchelli L., Serres U., “Avoiding observability singularities in output feedback bilinear systems”, SIAM J. Control Optim., 59:3 (2021), 1759–1780 | DOI | MR | Zbl
[8] Brivadis L., Gauthier J.-P., Sacchelli L., Serres U., “New perspectives on output feedback stabilization at an unobservable target”, ESAIM. Control Optim. Calc. Var., 27 (2021), 102 | DOI | MR | Zbl
[9] Brivadis L., Sacchelli L., “A switching technique for output feedback stabilization at an unobservable target”, 2021 60th IEEE Conf. on Decision and Control (CDC) (Austin, 2021), IEEE, 2021, 3942–3947 | DOI
[10] Celle F., Gauthier J.-P., Kazakos D., Sallet G., “Synthesis of nonlinear observers: A harmonic-analysis approach”, Math. Syst. Theory, 22:4 (1989), 291–322 | DOI | MR | Zbl
[11] Combes P., Jebai A.K., Malrait F., Martin P., Rouchon P., “Adding virtual measurements by signal injection”, 2016 Amer. Control Conf. (ACC) (Boston, 2016), IEEE, 2016, 999–1005 | DOI
[12] Coron J.-M., “On the stabilization of controllable and observable systems by an output feedback law”, Math. Control Signals Syst., 7:3 (1994), 187–216 | DOI | MR | Zbl
[13] Flayac E., Coupled methods of nonlinear estimation and control applicable to terrain-aided navigation, Thèse Doct., Univ. Paris-Saclay (ComUE), Paris, 2019
[14] Fliess M., Kupka I., “A finiteness criterion for nonlinear input–output differential systems”, SIAM J. Control Optim., 21:5 (1983), 721–728 | DOI | MR | Zbl
[15] Gauthier J.-P., Kupka I., “A separation principle for bilinear systems with dissipative drift”, IEEE Trans. Autom. Control, 37:12 (1992), 1970–1974 | DOI | MR | Zbl
[16] Gauthier J.-P., Kupka I., Deterministic observation theory and applications, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[17] Goresky M., MacPherson R., Stratified Morse theory, Ergeb. Math. Grenzgeb. 3. Flg., 14, Springer, Berlin, 1988 | MR | Zbl
[18] Hoang T.-B., Pasillas-Lépine W., Respondek W., “A switching observer for systems with linearizable error dynamics via singular time-scaling”, Proc. 21st Int. Symp. on Mathematical Theory of Networks and Systems, MTNS 2014 (Groningen), Univ. Groningen, Groningen, 2014, 1101–1108
[19] Jouan P., Gauthier J.-P., “Finite singularities of nonlinear systems. Output stabilization, observability and observers”, Proc. 1995 34th IEEE Conf. on Decision and Control (New Orleans, LA, 1995), v. 4, IEEE, 1995, 3295–3299 | DOI | MR
[20] Jouan P., Gauthier J.-P., “Finite singularities of nonlinear systems. Output stabilization, observability, and observers”, J. Dyn. Control Syst., 2:2 (1996), 255–288 | DOI | MR | Zbl
[21] Jurdjevic V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[22] J. Kurzweil, “On the inversion of Ljapunov's second theorem on stability of motion”, Am. Math. Soc. Transl., Ser. 2, 24 (1963), 19–77 | Zbl
[23] Lagache M.-A., Serres U., Gauthier J.-P., “Exact output stabilization at unobservable points: Analysis via an example”, Proc. 2017 IEEE 56th Annu. Conf. on Decision and Control (CDC), IEEE, 2017, 6744–6749 | DOI
[24] Massera J.L., “Contributions to stability theory”, Ann. Math. Ser. 2, 64:1 (1956), 182–206 | DOI | MR | Zbl
[25] Mohler R.R., Kolodziej W.J., “An overview of bilinear system theory and applications”, IEEE Trans. Syst. Man Cybern., 10:10 (1980), 683–688 | DOI | MR | Zbl
[26] Nešić D., Sontag E.D., “Input-to-state stabilization of linear systems with positive outputs”, Syst. Control Lett., 35:4 (1998), 245–255 | DOI | MR
[27] Rapaport A., Dochain D., “A robust asymptotic observer for systems that converge to unobservable states—a batch reactor case study”, IEEE Trans. Autom. Control, 65:6 (2020), 2693–2699 | DOI | MR
[28] Sacchelli L., Brivadis L., Andrieu V., Serres U., Gauthier J.-P., “Dynamic output feedback stabilization of non-uniformly observable dissipative systems”, IFAC-PapersOnLine, 53:2 (2020), 4923–4928 | DOI
[29] Shim H., Teel A.R., “Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback”, Automatica, 39:3 (2003), 441–454 | DOI | MR | Zbl
[30] Sontag E.D., “Conditions for abstract nonlinear regulation”, Inf. Control, 51:2 (1981), 105–127 | DOI | MR | Zbl
[31] Surroop D., Combes P., Martin P., Rouchon P., “Third-order virtual measurements with signal injection”, Proc. 2019 IEEE 58th Conf. on Decision and Control (CDC), IEEE, 2019, 642–647 | DOI
[32] Surroop D., Combes P., Martin P., Rouchon P., “Adding virtual measurements by pwm-induced signal injection”, Proc. 2020 Amer. Control Conf. (ACC), IEEE, 2020, 2692–2698 | DOI
[33] Teel A., Praly L., “Global stabilizability and observability imply semi-global stabilizability by output feedback”, Syst. Control Lett., 22:5 (1994), 313–325 | DOI | MR | Zbl
[34] Teel A., Praly L., “Tools for semiglobal stabilization by partial state and output feedback”, SIAM J. Control Optim., 33:5 (1995), 1443–1488 | DOI | MR | Zbl
[35] Teel A.R., Praly L., “A smooth Lyapunov function from a class-$\mathcal K\mathcal L$ estimate involving two positive semidefinite functions”, ESAIM. Control Optim. Calc. Var., 5 (2000), 313–367 | DOI | MR | Zbl
[36] N. J. Vilenkin, Special Functions and the Theory of Group Representations, Transl. Math. Monogr., 22, Am. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl