Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 62-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We approximate the front of a flat sub-Riemannian structure on the Engel distribution in a neighborhood of a non-subanalytic singularity by the front of a control system integrable in elementary functions. As a corollary, we find the asymptotics of the exponential map of a flat sub-Riemannian structure on the Engel distribution.
Keywords: sphere and front of a sub-Riemannian structure, Engel distribution, exponential map.
@article{TM_2023_321_a3,
     author = {I. A. Bogaevsky},
     title = {Front {Asymptotics} of a {Flat} {Sub-Riemannian} {Structure} on the {Engel} {Distribution}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {62--76},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a3/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 62
EP  - 76
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a3/
LA  - ru
ID  - TM_2023_321_a3
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 62-76
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a3/
%G ru
%F TM_2023_321_a3
I. A. Bogaevsky. Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 62-76. http://geodesic.mathdoc.fr/item/TM_2023_321_a3/

[1] Agrachev A.A., “Exponential mappings for contact sub-Riemannian structures”, J. Dyn. Control Syst., 2:3 (1996), 321–358 | DOI | MR | Zbl

[2] Agrachev A., Bonnard B., Chyba M., Kupka I., “Sub-Riemannian sphere in Martinet flat case”, ESAIM. Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl

[3] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl

[4] A. A. Ardentov and Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl

[5] Ardentov A.A., Sachkov Yu.L., “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci., 195:3 (2013), 369–390 | DOI | MR | Zbl

[6] Ardentov A.A., Sachkov Yu.L., “Cut time in sub-Riemannian problem on Engel group”, ESAIM. Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl

[7] Ardentov A.A., Sachkov Yu.L., “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl

[8] I. A. Bogaevsky, “Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution”, Sb. Math., 213:5 (2022), 624–640 | DOI | DOI | MR

[9] El-Alaoui El-H.Ch., Gauthier J.-P., Kupka I., “Small sub-Riemannian balls on $R^3$”, J. Dyn. Control Syst., 2:3 (1996), 359–421 | DOI | MR | Zbl

[10] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Prog. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[11] Yu. L. Sachkov and A. Yu. Popov, “Sub-Riemannian Engel sphere”, Dokl. Math., 104:2 (2021), 301–305 | DOI | DOI | MR | Zbl

[12] A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical Systems VII, Encycl. Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR