Abnormal Trajectories in the Sub-Riemannian $(2,3,5,8)$ Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 252-285
Voir la notice de l'article provenant de la source Math-Net.Ru
Abnormal trajectories are of particular interest for sub-Riemannian geometry, because the most complicated singularities of the sub-Riemannian metric are located just near such trajectories. Important open questions in sub-Riemannian geometry are to establish whether the abnormal length minimizers are smooth and to describe the set filled with abnormal trajectories starting from a fixed point. For example, the Sard conjecture in sub-Riemannian geometry states that this set has measure zero. In this paper, we consider this and other related properties of such a set for the left-invariant sub-Riemannian problem with growth vector $(2,3,5,8)$. We also study the global and local optimality of abnormal trajectories and obtain their explicit parametrization.
Keywords:
sub-Riemannian geometry, abnormal trajectories, abnormal set, local and global optimality.
@article{TM_2023_321_a16,
author = {Yu. L. Sachkov and E. F. Sachkova},
title = {Abnormal {Trajectories} in the {Sub-Riemannian} $(2,3,5,8)$ {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {252--285},
publisher = {mathdoc},
volume = {321},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a16/}
}
TY - JOUR AU - Yu. L. Sachkov AU - E. F. Sachkova TI - Abnormal Trajectories in the Sub-Riemannian $(2,3,5,8)$ Problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 252 EP - 285 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a16/ LA - ru ID - TM_2023_321_a16 ER -
Yu. L. Sachkov; E. F. Sachkova. Abnormal Trajectories in the Sub-Riemannian $(2,3,5,8)$ Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 252-285. http://geodesic.mathdoc.fr/item/TM_2023_321_a16/