An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 223-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Finsler analog of the Lobachevsky plane is the Lie group of proper affine transformations of the real line with a left-invariant Finsler structure generated by a convex compact set in the Lie algebra with the origin in its interior. We consider the isoperimetric problem on this Lie group, with the volume form also taken to be left-invariant. This problem is formulated as an optimal control problem. Applying the Pontryagin maximum principle, we find the optimal isoperimetric loops in an explicit form in terms of convex trigonometry functions. We also present a generalized isoperimetric inequality in a parametric form.
Keywords: Finsler geometry, isoperimetric problem, isoperimetric inequality, Lobachevsky plane, hyperbolic plane, optimal control, convex trigonometry.
@article{TM_2023_321_a14,
     author = {V. A. Myrikova},
     title = {An {Isoperimetric} {Problem} on the {Lobachevsky} {Plane} with a {Left-Invariant} {Finsler} {Structure}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {223--236},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a14/}
}
TY  - JOUR
AU  - V. A. Myrikova
TI  - An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 223
EP  - 236
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a14/
LA  - ru
ID  - TM_2023_321_a14
ER  - 
%0 Journal Article
%A V. A. Myrikova
%T An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 223-236
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a14/
%G ru
%F TM_2023_321_a14
V. A. Myrikova. An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 223-236. http://geodesic.mathdoc.fr/item/TM_2023_321_a14/

[1] Ardentov A.A., Lokutsievskiy L.V., Sachkov Yu.L., “Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry”, ESAIM. Control Optim. Calc. Var., 27 (2021), 32 ; arXiv: 2004.10194 [math.OC] | DOI | MR | Zbl

[2] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundl. Math. Wiss., 285, Springer, Berlin, 1988 | MR | Zbl

[3] Busemann H., “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69:4 (1947), 863–871 | DOI | MR | Zbl

[4] Evans L.C., Gariepy R.F., Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 2015 | MR | Zbl

[5] I. A. Gribanova, “On a quasihyperbolic plane”, Sib. Math. J., 40:2 (1999), 245–257 | DOI | MR | Zbl

[6] L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205 | DOI | DOI | MR | Zbl