Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 215-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a time-optimal problem for a car model that can move forward on a plane and turn with a given minimum turning radius. Trajectories of this system are applicable in image processing for the detection of salient lines. We prove the controllability and existence of optimal trajectories. Applying the necessary optimality condition given by the Pontryagin maximum principle, we derive a Hamiltonian system for the extremals. We provide qualitative analysis of the Hamiltonian system and obtain explicit expressions for the extremal controls and trajectories.
Keywords: geometric control, model of a car, extremal trajectories, Pontryagin maximum principle, group of motions of a plane.
@article{TM_2023_321_a13,
     author = {Alexey P. Mashtakov and Yuri L. Sachkov},
     title = {Extremal {Trajectories} in a {Time-Optimal} {Problem} on the {Group} of {Motions} of a {Plane} with {Admissible} {Control} in a {Circular} {Sector}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--222},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a13/}
}
TY  - JOUR
AU  - Alexey P. Mashtakov
AU  - Yuri L. Sachkov
TI  - Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 215
EP  - 222
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a13/
LA  - ru
ID  - TM_2023_321_a13
ER  - 
%0 Journal Article
%A Alexey P. Mashtakov
%A Yuri L. Sachkov
%T Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 215-222
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a13/
%G ru
%F TM_2023_321_a13
Alexey P. Mashtakov; Yuri L. Sachkov. Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 215-222. http://geodesic.mathdoc.fr/item/TM_2023_321_a13/

[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl

[2] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl

[3] V. I. Arnol'd, Ordinary Differential Equations, Springer, Berlin, 1992 | MR | Zbl

[4] Bekkers E.J., Duits R., Mashtakov A., Sanguinetti G.R., “A PDE approach to data-driven sub-Riemannian geodesics in $\mathrm {SE}(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl

[5] V. N. Berestovskiĭ, “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Sib. Math. J., 35:6 (1994), 1083–1088 | DOI | MR | Zbl

[6] Boscain U., Gauthier J.-P., Prandi D., Remizov A., “Image reconstruction via non-isotropic diffusion in Dubins/Reed–Shepp-like control systems”, 53rd IEEE Conf. on Decision and Control (Los Angeles, 2014), IEEE, 2014, 4278–4283 | DOI | MR

[7] Citti G., Sarti A., “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vis., 24:3 (2006), 307–326 | DOI | MR | Zbl

[8] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[9] Duits R., Boscain U., Rossi F., Sachkov Yu.L., “Association fields via cuspless sub-Riemannian geodesics in $\mathrm {SE}(2)$”, J. Math. Imaging Vis., 49:2 (2014), 384–417 | DOI | MR | Zbl

[10] Duits R., Meesters S.P.L., Mirebeau J.-M., Portegies J.M., “Optimal paths for variants of the 2D and 3D Reeds–Shepp car with applications in image analysis”, J. Math. Imaging Vis., 60:6 (2018), 816–848 | DOI | MR | Zbl

[11] L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205 | DOI | DOI | MR | Zbl

[12] Mashtakov A., “Extremal controls for the Duits car”, Geometric science of information: Proc. 5th Int. Conf. GSI 2021 (Paris, 2021), Lect. Notes Computer Sci., 12829, ed. by F. Nielsen and F. Barbaresco, Springer, Cham, 2021, 73–81 | DOI | MR | Zbl

[13] A. P. Mashtakov, “Time minimization problem on the group of motions of a plane with admissible control in a half-disc”, Sb. Math., 213:4 (2022), 534–555 | DOI | DOI | MR | Zbl

[14] Mashtakov A.P., Ardentov A.A., Sachkov Yu.L., “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115 | DOI | MR | Zbl

[15] Petitot J., “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309 | DOI

[16] Reeds J.A., Shepp L.A., “Optimal paths for a car that goes both forwards and backwards”, Pac. J. Math., 145:2 (1990), 367–393 | DOI | MR | Zbl

[17] Yu. L. Sachkov, “Control theory on Lie groups”, J. Math. Sci., 156:3 (2009), 381–439 | DOI | MR | Zbl

[18] Sachkov Yu.L., “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM. Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl