Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_321_a11, author = {Margarida Camarinha and F\'atima Silva Leite and Peter E. Crouch}, title = {High-Order {Splines} on {Riemannian} {Manifolds}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {172--193}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a11/} }
TY - JOUR AU - Margarida Camarinha AU - Fátima Silva Leite AU - Peter E. Crouch TI - High-Order Splines on Riemannian Manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 172 EP - 193 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a11/ LA - ru ID - TM_2023_321_a11 ER -
Margarida Camarinha; Fátima Silva Leite; Peter E. Crouch. High-Order Splines on Riemannian Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 172-193. http://geodesic.mathdoc.fr/item/TM_2023_321_a11/
[1] Abrunheiro L., Camarinha M., Clemente-Gallardo J., “Cubic polynomials on Lie groups: Reduction of the Hamiltonian system”, J. Phys. A: Math. Theor., 44:35 (2011), 355203 | DOI | MR | Zbl
[2] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[3] Ahlberg J.H., Nilson E.N., Walsh J.L., The theory of splines and their applications, Academic Press, New York, 1967 | MR | Zbl
[4] Altafini C., “Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric”, ESAIM. Control Optim. Calc. Var., 10:4 (2004), 526–548 | DOI | MR | Zbl
[5] Arroyo J., Garay O.J., Mencía J.J., “Unit speed stationary points of the acceleration”, J. Math. Phys., 49:1 (2008), 013508 | DOI | MR | Zbl
[6] Balseiro P., Stuchi T.J., Cabrera A., Koiller J., “About simple variational splines from the Hamiltonian viewpoint”, J. Geom. Mech., 9:3 (2017), 257–290 | DOI | MR | Zbl
[7] Barbero-Liñán M., Muñoz-Lecanda M.C., “Strict abnormal extremals in nonholonomic and kinematic control systems”, Discrete Contin. Dyn. Syst. Ser. S, 3:1 (2010), 1–17 | MR | Zbl
[8] Batzies E., Hüper K., Machado L., Silva Leite F., “Geometric mean and geodesic regression on Grassmannians”, Linear Algebra Appl., 466 (2015), 83–101 | DOI | MR | Zbl
[9] Bloch A., Camarinha M., Colombo L.J., “Dynamic interpolation for obstacle avoidance on Riemannian manifolds”, Int. J. Control, 94:3 (2021), 588–600 | DOI | MR | Zbl
[10] Bloch A., Colombo L., Gupta R., Martín de Diego D., “A geometric approach to the optimal control of nonholonomic mechanical systems”, Analysis and geometry in control theory and its applications, Springer INdAM Ser., 11, Springer, Cham, 2015, 35–64 | DOI | MR | Zbl
[11] Bloch A.M., Crouch P.E., “Reduction of Euler–Lagrange problems for constrained variational problems and relation with optimal control problems”, Proc. 33rd IEEE Conf. on Decision and Control (Lake Buena Vista, FL, USA, 1994), v. 3, IEEE, 1994, 2584–2590
[12] Bloch A.M., Crouch P.E., “Optimal control, optimization, and analytical mechanics”, Mathematical control theory, Springer, New York, 1999, 268–321 | DOI | MR
[13] Bloch A.M., Gupta R., Kolmanovsky I.V., “Neighboring extremal optimal control for mechanical systems on Riemannian manifolds”, J. Geom. Mech., 8:3 (2016), 257–272 | DOI | MR | Zbl
[14] Bogfjellmo G., Modin K., Verdier O., “A numerical algorithm for $C^2$-splines on symmetric spaces”, SIAM J. Numer. Anal., 56:4 (2018), 2623–2647 | DOI | MR | Zbl
[15] Branding V., “A structure theorem for polyharmonic maps between Riemannian manifolds”, J. Diff. Eqns., 273 (2021), 14–39 | DOI | MR | Zbl
[16] Burnett C.L., Holm D.D., Meier D.M., Geometric integrators for higher-order mechanics on Lie groups, E-print, 2011, arXiv: 1112.6037 [math.DS]
[17] Caddeo R., Montaldo S., Oniciuc C., Piu P., “The Euler–Lagrange method for biharmonic curves”, Mediterr. J. Math., 3 (2006), 449–465 | DOI | MR | Zbl
[18] Camarinha M., Silva Leite F., Crouch P., “Splines of class $\mathrm C^k$ on non-Euclidean spaces”, IMA J. Math. Control Inf., 12:4 (1995), 399–410 | DOI | MR | Zbl
[19] Camarinha M., Silva Leite F., Crouch P., “Geometrical polynomials of odd degree in Riemannian manifolds”, Proc. 1997 Eur. Control Conf. (ECC), IEEE, 1997, 1872–1878 | DOI
[20] Camarinha M., Silva Leite F., Crouch P., “On the geometry of Riemannian cubic polynomials”, Diff. Geom. Appl., 15:2 (2001), 107–135 | DOI | MR | Zbl
[21] Camarinha M., Silva Leite F., Crouch P., “Existence and uniqueness for Riemannian cubics with boundary conditions”, CONTROLO 2020: Proc. 14th APCA Int. Conf. on Automatic Control and Soft Computing (Bragança (Portugal), 2020), Lect. Notes Electr. Eng., 695, Springer, Cham, 2021, 322–331 | DOI
[22] Camarinha M., Silva Leite F., Crouch P., “Riemannian cubics close to geodesics at the boundaries”, J. Geom. Mech., 14:4 (2022), 545–558 | DOI | MR
[23] Campos C.M., Ober-Blöbaum S., Trélat E., “High order variational integrators in the optimal control of mechanical systems”, Discrete Contin. Dyn. Syst., 35:9 (2015), 4193–4223 | DOI | MR | Zbl
[24] Colombo L., Ferraro S., Martín de Diego D., “Geometric integrators for higher-order variational systems and their application to optimal control”, J. Nonlinear Sci., 26:6 (2016), 1615–1650 | DOI | MR | Zbl
[25] Crouch P., Kun G., Silva Leite F., “The De Casteljau algorithm on Lie groups and spheres”, J. Dyn. Control Syst., 5:3 (1999), 397–429 | DOI | MR | Zbl
[26] Crouch P., Silva Leite F., “Geometry and the dynamic interpolation problem”, Proc. 1991 Amer. Control Conf., IEEE, 1991, 1131–1136 | DOI | MR
[27] Crouch P., Silva Leite F., “The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces”, J. Dyn. Control Syst., 1:2 (1995), 177–202 | DOI | MR | Zbl
[28] Crouch P., Silva Leite F., Camarinha M., A second order Riemannian variational problem from a Hamiltonian perspective, Preprint 98-17, Dept. Mat., Univ. Coimbra, Coimbra, 1998 http://www.mat.uc.pt/preprints/ps/p9817.ps
[29] Crouch P., Silva Leite F., Camarinha M., “Hamiltonian structure of generalized cubic polynomials”, Lagrangian and Hamiltonian methods for nonlinear control, Proc. Workshop (Princeton, NJ, USA, 2000), IFAC Proc. Vol., 33, N 2, Elsevier, Amsterdam, 2000, 13–18 | DOI
[30] Eells J., \textup {Jr.}, Sampson J.H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86:2 (1964), 109–160 | DOI | MR | Zbl
[31] Gabriel S., Kajiya J., “Spline interpolation in curved space”, State of the art in image synthesis: Course notes, SIGGRAPH 85, San Francisco, CA, 1985, 1–14 | Zbl
[32] Gamkrelidze R.V., Principles of optimal control theory, Math. Concepts Methods Sci. Eng., 7, Plenum Press, New York, 1978 | MR | Zbl
[33] Garay Ó.J., Noakes L., “Elastic helices in simple Lie groups”, J. Lie Theory, 25:1 (2015), 215–231 | MR | Zbl
[34] Gay-Balmaz F., Holm D.D., Meier D.M., Ratiu T.S., Vialard F.-X., “Invariant higher-order variational problems”, Commun. Math. Phys., 309:2 (2012), 413–458 | DOI | MR | Zbl
[35] Gay-Balmaz F., Holm D.D., Meier D.M., Ratiu T.S., Vialard F.-X., “Invariant higher-order variational problems. II”, J. Nonlinear Sci., 22:4 (2012), 553–597 | DOI | MR | Zbl
[36] Gay-Balmaz F., Holm D., Ratiu T.S., “Higher order Lagrange–Poincaré and Hamilton–Poincaré reductions”, Bull. Braz. Math. Soc., 42:4 (2011), 579–606 | DOI | MR | Zbl
[37] Giambò R., Giannoni F., Piccione P., “Optimal control on Riemannian manifolds by interpolation”, Math. Control Signals Syst., 16:4 (2004), 278–296 | DOI | MR | Zbl
[38] Gousenbourger P.-Y., Massart E., Absil P.-A., “Data fitting on manifolds with composite Bézier-like curves and blended cubic splines”, J. Math. Imaging Vis., 61:5 (2019), 645–671 | DOI | MR | Zbl
[39] Heeren B., Rumpf M., Wirth B., “Variational time discretization of Riemannian splines”, IMA J. Numer. Anal., 39:1 (2019), 61–104 | MR | Zbl
[40] Hüper K., Krakowski K.A., Silva Leite F., “Rolling maps and nonlinear data”, Handbook of variational methods for nonlinear geometric data, ed. by P. Grohs, M. Holler, A. Weinmann, Springer, Cham, 2020, 577–610 | DOI | MR | Zbl
[41] Hüper K., Silva Leite F., “On the geometry of rolling and interpolation curves on $S^n$, $\mathrm {SO}_n$, and Grassmann manifolds”, J. Dyn. Control Syst., 13:4 (2007), 467–502 | DOI | MR | Zbl
[42] Hussein I.I., Bloch A.M., “Dynamic coverage optimal control for multiple spacecraft interferometric imaging”, J. Dyn. Control Syst., 13:1 (2007), 69–93 | DOI | MR | Zbl
[43] Jupp P.E., Kent J.T., “Fitting smooth paths to spherical data”, J. R. Stat. Soc. Ser. C, 36:1 (1987), 34–46 | MR | Zbl
[44] Jurdjevic V., “Non-Euclidean elastica”, Amer. J. Math., 117:1 (1995), 93–124 | DOI | MR | Zbl
[45] Jurdjevic V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[46] Krakowski K.A., Geometrical methods of inference, PhD Thesis, Univ. Western Australia, Perth, 2002
[47] Lee J.M., Riemannian manifolds: An introduction to curvature, Grad. Texts Math., 176, Springer, New York, 1997 | DOI | MR | Zbl
[48] Machado L., Silva Leite F., “Fitting smooth paths on Riemannian manifolds”, Int. J. Appl. Math. Stat., 4:J06 (2006), 25–53 | MR | Zbl
[49] Machado L., Silva Leite F., Krakowski K., “Higher-order smoothing splines versus least squares problems on Riemannian manifolds”, J. Dyn. Control Syst., 16:1 (2010), 121–148 | DOI | MR | Zbl
[50] Maeta S., “The second variational formula of the $k$-energy and $k$-harmonic curves”, Osaka J. Math., 49:4 (2012), 1035–1063 | MR | Zbl
[51] Marsden J.E., West M., “Discrete mechanics and variational integrators”, Acta Numerica, 10 (2001), 357–514 | DOI | MR | Zbl
[52] Milnor J.W., Morse theory, Ann. Math. Stud., 51, Princeton Univ., Princeton, NJ, 1963 | MR | Zbl
[53] Montaldo S., Oniciuc C., “A short survey on biharmonic maps between Riemannian manifolds”, Rev. Unión Mat. Argent., 47:2 (2006), 1–22 | MR | Zbl
[54] Noakes L., “Null cubics and Lie quadratics”, J. Math. Phys., 44:3 (2003), 1436–1448 | DOI | MR | Zbl
[55] Noakes L., “Approximating near-geodesic natural cubic splines”, Commun. Math. Sci., 12:8 (2014), 1409–1425 | DOI | MR | Zbl
[56] Noakes L., Heinzinger G., Paden B., “Cubic splines on curved spaces”, IMA J. Math. Control Inf., 6:4 (1989), 465–473 | DOI | MR | Zbl
[57] Noakes L., Popiel T., “Null Riemannian cubics in tension in $\mathrm {SO}(3)$”, IMA J. Math. Control Inf., 22:4 (2005), 477–488 | DOI | MR | Zbl
[58] Noakes L., Popiel T., “Quadratures and cubics in $\mathrm {SO}(3)$ and $\mathrm {SO}(1,2)$”, IMA J. Math. Control Inf., 23:4 (2006), 463–473 | DOI | MR | Zbl
[59] Noakes L., Ratiu T.S., “Bi-Jacobi fields and Riemannian cubics for left-invariant $\mathrm {SO}(3)$”, Commun. Math. Sci., 14:1 (2016), 55–68 | DOI | MR
[60] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl
[61] Park F.C., Ravani B., “Bézier curves on Riemannian manifolds and Lie groups with kinematics applications”, ASME J. Mech. Des., 117:1 (1995), 36–40 | DOI
[62] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publ., New York, 1962 | MR | MR | Zbl
[63] Popiel T., “Higher order geodesics in Lie groups”, Math. Control Signals Syst., 19:3 (2007), 235–253 | DOI | MR | Zbl
[64] Popiel T., Noakes L., “Bézier curves and $C^2$ interpolation in Riemannian manifolds”, J. Approx. Theory, 148:2 (2007), 111–127 | DOI | MR | Zbl
[65] Prenter P.M., Splines and variational methods, Pure Appl. Math., J. Wiley Sons, New York, 1975 | MR | Zbl
[66] Silva Leite F., Camarinha M., Crouch P., “Elastic curves as solutions of Riemannian and sub-Riemannian control problems”, Math. Control Signals Syst., 13:2 (2000), 140–155 | DOI | MR | Zbl
[67] Žefran M., Kumar V., Croke C.B., “On the generation of smooth three-dimensional rigid body motions”, IEEE Trans. Robot. Autom., 14:4 (1998), 576–589 | DOI | MR
[68] Zhang E., Noakes L., “Left Lie reduction for curves in homogeneous spaces”, Adv. Comput. Math., 44:5 (2018), 1673–1686 | DOI | MR | Zbl