High-Order Splines on Riemannian Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 172-193
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is an overview of the work of the authors about generalized polynomial curves and splines on Riemannian manifolds. The emphasis is put on the variational approach that gives rise to such curves, and on the Hamiltonian formulation for the cubic case.
Keywords:
Riemannian polynomial splines, variational problems, generalized Jacobi fields and conjugate points, $m$-exponential, optimal control, Hamiltonian equations.
Mots-clés : Euler–Lagrange equations
Mots-clés : Euler–Lagrange equations
@article{TM_2023_321_a11,
author = {Margarida Camarinha and F\'atima Silva Leite and Peter E. Crouch},
title = {High-Order {Splines} on {Riemannian} {Manifolds}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {172--193},
publisher = {mathdoc},
volume = {321},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a11/}
}
TY - JOUR AU - Margarida Camarinha AU - Fátima Silva Leite AU - Peter E. Crouch TI - High-Order Splines on Riemannian Manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 172 EP - 193 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a11/ LA - ru ID - TM_2023_321_a11 ER -
Margarida Camarinha; Fátima Silva Leite; Peter E. Crouch. High-Order Splines on Riemannian Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 172-193. http://geodesic.mathdoc.fr/item/TM_2023_321_a11/