Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_321_a10, author = {Rinat A. Kamalov and Vladimir Yu. Protasov}, title = {On the {Length} of {Switching} {Intervals} of a {Stable} {Dynamical} {System}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {162--171}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a10/} }
TY - JOUR AU - Rinat A. Kamalov AU - Vladimir Yu. Protasov TI - On the Length of Switching Intervals of a Stable Dynamical System JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 162 EP - 171 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_321_a10/ LA - ru ID - TM_2023_321_a10 ER -
%0 Journal Article %A Rinat A. Kamalov %A Vladimir Yu. Protasov %T On the Length of Switching Intervals of a Stable Dynamical System %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 162-171 %V 321 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2023_321_a10/ %G ru %F TM_2023_321_a10
Rinat A. Kamalov; Vladimir Yu. Protasov. On the Length of Switching Intervals of a Stable Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 162-171. http://geodesic.mathdoc.fr/item/TM_2023_321_a10/
[1] Blanchini F., Casagrande D., Miani S., “Modal and transition dwell time computation in switching systems: A set-theoretic approach”, Automatica, 46:9 (2010), 1477–1482 | DOI | MR | Zbl
[2] Blanchini F., Miani S., “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Autom. Control, 44:3 (1999), 641–647 | DOI | MR | Zbl
[3] Chesi G., Colaneri P., Geromel J.C., Middleton R., Shorten R., “A nonconservative {LMI} condition for stability of switched systems with guaranteed dwell time”, IEEE Trans. Autom. Control, 57:5 (2012), 1297–1302 | DOI | MR | Zbl
[4] Chitour Y., Guglielmi N., Protasov V.Yu., Sigalotti M., “Switching systems with dwell time: Computing the maximal Lyapunov exponent”, Nonlinear Anal. Hybrid Syst., 40 (2021), 101021 | DOI | MR | Zbl
[5] Dzyadyk V.K., Shevchuk I.A., Theory of uniform approximation of functions by polynomials, W. de Gruyter, Berlin, 2008 | MR | Zbl
[6] Geromel J.C., Colaneri P., “Stability and stabilization of continuous-time switched linear systems”, SIAM J. Control Optim., 45:5 (2006), 1915–1930 | DOI | MR | Zbl
[7] Guglielmi N., Laglia L., Protasov V., “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623 | DOI | MR | Zbl
[8] Ingalls B., Sontag E., Wang Y., “An infinite-time relaxation theorem for differential inclusions”, Proc. Amer. Math. Soc., 131:2 (2003), 487–499 | DOI | MR | Zbl
[9] Karlin S., Studden W.J., Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Interscience, New York, 1966 | MR | Zbl
[10] Liberzon D., Switching in systems and control, Syst. Control Found. Appl., Birkhäuser, Boston, 2003 | DOI | MR | Zbl
[11] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, Transl. Math. Monogr., 222, Am. Math. Soc., Providence, RI, 2003 | MR | Zbl
[12] Mejstrik T., “Algorithm 1011: Improved invariant polytope algorithm and applications”, ACM Trans. Math. Softw., 46:3 (2020), 29 | DOI | MR | Zbl
[13] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. III”, Autom. Remote Control, 47:5 (1986), 620–630 | MR | Zbl
[14] Molchanov A.P., Pyatnitskiy Ye.S., “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Syst. Control Lett., 13:1 (1989), 59–64 | DOI | MR | Zbl
[15] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977 | MR
[16] Protasov V.Yu., Kamalov R., Stability of linear systems with bounded switching intervals, E-print, 2022, arXiv: 2205.15446 [math.OC]
[17] Remes E., “Sur le calcul effectif des polynomes d'approximation de Tchebichef”, C. r. Acad. sci. Paris, 199 (1934), 337–340 | Zbl
[18] Van der Schaft A., Schumacher H., An introduction to hybrid dynamical systems, Lect. Notes Control Inf. Sci., 251, Springer, London, 2000 | MR | Zbl
[19] Souza M., Fioravanti A.R., Shorten R.N., “Dwell-time control of continuous-time switched linear systems”, Proc. 54th IEEE Conf. on Decision and Control (Los Angeles, 2014), IEEE, 2014, 4661–4666 | DOI