On the Length of Switching Intervals of a Stable Dynamical System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 162-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear switching system is a system of linear ODEs with time-dependent matrix taking values in a given control matrix set. The system is asymptotically stable if all its trajectories tend to zero for every control matrix function. Mode-dependent restrictions on the lengths of switching intervals can be imposed. Does the system remain stable after removal of the restrictions? When does the stability of the trajectories with short switching intervals imply the stability of all trajectories? The answers to these questions are given in terms of the “tail cut-off points” of linear operators. We derive an algorithm to compute them by applying Chebyshev-type exponential polynomials.
Keywords: linear switching system, dynamical system, stability, switching time intervals, extremal polynomial, Chebyshev system, convex extremal problem.
Mots-clés : quasipolynomials
@article{TM_2023_321_a10,
     author = {Rinat A. Kamalov and Vladimir Yu. Protasov},
     title = {On the {Length} of {Switching} {Intervals} of a {Stable} {Dynamical} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {162--171},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a10/}
}
TY  - JOUR
AU  - Rinat A. Kamalov
AU  - Vladimir Yu. Protasov
TI  - On the Length of Switching Intervals of a Stable Dynamical System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 162
EP  - 171
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a10/
LA  - ru
ID  - TM_2023_321_a10
ER  - 
%0 Journal Article
%A Rinat A. Kamalov
%A Vladimir Yu. Protasov
%T On the Length of Switching Intervals of a Stable Dynamical System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 162-171
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a10/
%G ru
%F TM_2023_321_a10
Rinat A. Kamalov; Vladimir Yu. Protasov. On the Length of Switching Intervals of a Stable Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 162-171. http://geodesic.mathdoc.fr/item/TM_2023_321_a10/

[1] Blanchini F., Casagrande D., Miani S., “Modal and transition dwell time computation in switching systems: A set-theoretic approach”, Automatica, 46:9 (2010), 1477–1482 | DOI | MR | Zbl

[2] Blanchini F., Miani S., “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Autom. Control, 44:3 (1999), 641–647 | DOI | MR | Zbl

[3] Chesi G., Colaneri P., Geromel J.C., Middleton R., Shorten R., “A nonconservative {LMI} condition for stability of switched systems with guaranteed dwell time”, IEEE Trans. Autom. Control, 57:5 (2012), 1297–1302 | DOI | MR | Zbl

[4] Chitour Y., Guglielmi N., Protasov V.Yu., Sigalotti M., “Switching systems with dwell time: Computing the maximal Lyapunov exponent”, Nonlinear Anal. Hybrid Syst., 40 (2021), 101021 | DOI | MR | Zbl

[5] Dzyadyk V.K., Shevchuk I.A., Theory of uniform approximation of functions by polynomials, W. de Gruyter, Berlin, 2008 | MR | Zbl

[6] Geromel J.C., Colaneri P., “Stability and stabilization of continuous-time switched linear systems”, SIAM J. Control Optim., 45:5 (2006), 1915–1930 | DOI | MR | Zbl

[7] Guglielmi N., Laglia L., Protasov V., “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623 | DOI | MR | Zbl

[8] Ingalls B., Sontag E., Wang Y., “An infinite-time relaxation theorem for differential inclusions”, Proc. Amer. Math. Soc., 131:2 (2003), 487–499 | DOI | MR | Zbl

[9] Karlin S., Studden W.J., Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Interscience, New York, 1966 | MR | Zbl

[10] Liberzon D., Switching in systems and control, Syst. Control Found. Appl., Birkhäuser, Boston, 2003 | DOI | MR | Zbl

[11] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, Transl. Math. Monogr., 222, Am. Math. Soc., Providence, RI, 2003 | MR | Zbl

[12] Mejstrik T., “Algorithm 1011: Improved invariant polytope algorithm and applications”, ACM Trans. Math. Softw., 46:3 (2020), 29 | DOI | MR | Zbl

[13] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. III”, Autom. Remote Control, 47:5 (1986), 620–630 | MR | Zbl

[14] Molchanov A.P., Pyatnitskiy Ye.S., “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Syst. Control Lett., 13:1 (1989), 59–64 | DOI | MR | Zbl

[15] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977 | MR

[16] Protasov V.Yu., Kamalov R., Stability of linear systems with bounded switching intervals, E-print, 2022, arXiv: 2205.15446 [math.OC]

[17] Remes E., “Sur le calcul effectif des polynomes d'approximation de Tchebichef”, C. r. Acad. sci. Paris, 199 (1934), 337–340 | Zbl

[18] Van der Schaft A., Schumacher H., An introduction to hybrid dynamical systems, Lect. Notes Control Inf. Sci., 251, Springer, London, 2000 | MR | Zbl

[19] Souza M., Fioravanti A.R., Shorten R.N., “Dwell-time control of continuous-time switched linear systems”, Proc. 54th IEEE Conf. on Decision and Control (Los Angeles, 2014), IEEE, 2014, 4661–4666 | DOI