Weakening State Constraints in Optimal Control Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 31-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem is considered in which the integral term of the functional to be minimized contains the characteristic function of a given open set of undesirable system states. The statement of this problem can be viewed as a weakening of the statement of the standard optimal control problem with a state constraint. Conditions are obtained that guarantee the equivalence of these problems. Two illustrative examples are given.
Keywords: optimal control, state constraint, risk zone, differential inclusion.
@article{TM_2023_321_a1,
     author = {S. M. Aseev},
     title = {Weakening {State} {Constraints} in {Optimal} {Control} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_321_a1/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Weakening State Constraints in Optimal Control Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 31
EP  - 44
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_321_a1/
LA  - ru
ID  - TM_2023_321_a1
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Weakening State Constraints in Optimal Control Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 31-44
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_321_a1/
%G ru
%F TM_2023_321_a1
S. M. Aseev. Weakening State Constraints in Optimal Control Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 31-44. http://geodesic.mathdoc.fr/item/TM_2023_321_a1/

[1] S. M. Aseev, “On an optimal control problem with discontinuous integrand”, Proc. Steklov Inst. Math., 304:Suppl. 1 (2019), S3–S13 | DOI | MR | Zbl

[2] Aseev S.M., “A problem of dynamic optimization in the presence of dangerous factors”, Stability, control and differential games, Proc. Int. Conf. SCDG2019 (Yekaterinburg, 2019), Lect. Notes Control Inf. Sci. – Proc., Springer, Cham, 2020, 273–281 | MR | Zbl

[3] S. M. Aseev, “Refined Euler–Lagrange inclusion for an optimal control problem with discontinuous integrand”, Proc. Steklov Inst. Math., 315 (2021), 27–55 | DOI | DOI | MR | Zbl

[4] S. M. Aseev and A. I. Smirnov, “Necessary first-order conditions for optimal crossing of a given region”, Comput. Math. Model., 18:4 (2007), 397–419 | DOI | MR | Zbl

[5] Aubin J.-P., Viability theory, Birkhäuser, Boston, 1991 | MR | Zbl

[6] Bayen T., Boumaza K., Rapaport A., Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization, E-print, 2021 https://hal-univ-avignon.archives-ouvertes.fr/hal-03153881v2

[7] Bayen T., Rapaport A., “About Moreau–Yosida regularization of the minimal time crisis problem”, J. Convex Anal., 23:1 (2016), 263–290 | MR | Zbl

[8] V. F. Borisov, V. V. Gael', and M. I. Zelikin, “Chattering regimes and Lagrangian manifolds in problems with phase constraints”, Izv. Math., 76:1 (2012), 1–38 | DOI | DOI | MR | Zbl

[9] Doyen L., Saint-Pierre P., “Scale of viability and minimal time of crisis”, Set-Valued Anal., 5:3 (1997), 227–246 | DOI | MR | Zbl

[10] A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems with constraints”, Sov. Math., Dokl., 4 (1963), 452–455 | MR | Zbl

[11] A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems in the presence of restrictions”, USSR Comput. Math. Math. Phys., 5:3 (1967), 1–80 | DOI | Zbl

[12] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988 | MR | MR | Zbl

[13] R. V. Gamkrelidze, “Time-optimal processes with restricted state coordinates”, Dokl. Akad. Nauk SSSR, 125:3 (1959), 475–478 | MR | Zbl

[14] R. V. Gamkrelidze, “Optimal control processes with restricted state coordinates”, Izv. Akad. Nauk SSSR, Ser. Mat., 24:3 (1960), 315–356 | MR | Zbl

[15] Garavello M., Piccoli B., “Hybrid necessary principle”, SIAM J. Control Optim., 43:5 (2005), 1867–1887 | DOI | MR | Zbl

[16] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009 | MR | MR

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl

[18] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8

[19] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15 | Zbl

[20] A. I. Smirnov, “Necessary optimality conditions for a class of optimal control problems with discontinuous integrand”, Proc. Steklov Inst. Math., 262 (2008), 213–230 | DOI | MR | Zbl