Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 189-242
Voir la notice de l'article provenant de la source Math-Net.Ru
In our papers of 2013–2018, we classified degenerations and Picard lattices of Kählerian K3 surfaces with finite symplectic automorphism groups of high order. For the remaining groups of small order—$D_6$, $C_4$, $(C_2)^2$, $C_3$, $C_2$, and $C_1$—the classification was not completed, because each of these cases requires very long and difficult considerations and calculations. The cases of $D_6$ and $C_4$ have been recently completely analyzed. Here we consider an analogous complete classification for the group $(C_2)^2$ of order $4$. We restrict ourselves to degenerations of codimension ${\le }\,5$. This group also has degenerations of codimension $6$ and $7$, which will be classified in a future paper.
@article{TM_2023_320_a8,
author = {Viacheslav V. Nikulin},
title = {Classification of {Degenerations} of {Codimension} ${\le }\,5$ and {Their} {Picard} {Lattices} for {K\"ahlerian} {K3} {Surfaces} with the {Symplectic} {Automorphism} {Group} $(C_2)^2$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {189--242},
publisher = {mathdoc},
volume = {320},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a8/}
}
TY - JOUR
AU - Viacheslav V. Nikulin
TI - Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2023
SP - 189
EP - 242
VL - 320
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TM_2023_320_a8/
LA - ru
ID - TM_2023_320_a8
ER -
%0 Journal Article
%A Viacheslav V. Nikulin
%T Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 189-242
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_320_a8/
%G ru
%F TM_2023_320_a8
Viacheslav V. Nikulin. Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 189-242. http://geodesic.mathdoc.fr/item/TM_2023_320_a8/