Surjectivity of the \'Etale Excision Map for Homotopy Invariant Framed Presheaves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 103-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The categories of framed correspondences, framed presheaves, and framed sheaves were introduced by V. Voevodsky in his foundational “Notes on framed correspondences.” Based on these notes, G. Garkusha and I. Panin proposed a totally new approach to the stable motivic homotopy category $\mathrm {SH}(k)$. Their new description of the classical category $\mathrm {SH}(k)$ uses only local equivalences provided that $k$ is an infinite perfect field and the characteristic of $k$ is not $2$. The main aim of the present paper is to extend Garkusha and Panin's fundamental result on framed presheaves to all infinite perfect fields (including characteristic $2$). As a corollary, the local description of the category $\mathrm {SH}(k)$ is automatically valid without any restrictions on the characteristic of the base field. The heart of the present paper is the proof of the homotopy invariance of the Nisnevich sheaf $\mathcal F_{\mathrm{Nis}}$ associated to any homotopy invariant radditive quasi-stable framed presheaf $\mathcal F$ of abelian groups. Then, applying literally Garkusha and Panin's arguments, we deduce the strict homotopy invariance of the Nisnevich sheaf $\mathcal F_{\mathrm{Nis}}$.
@article{TM_2023_320_a5,
     author = {Andrei E. Druzhinin and Ivan A. Panin},
     title = {Surjectivity of the {\'Etale} {Excision} {Map} for {Homotopy} {Invariant} {Framed} {Presheaves}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--127},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a5/}
}
TY  - JOUR
AU  - Andrei E. Druzhinin
AU  - Ivan A. Panin
TI  - Surjectivity of the \'Etale Excision Map for Homotopy Invariant Framed Presheaves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 103
EP  - 127
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_320_a5/
LA  - ru
ID  - TM_2023_320_a5
ER  - 
%0 Journal Article
%A Andrei E. Druzhinin
%A Ivan A. Panin
%T Surjectivity of the \'Etale Excision Map for Homotopy Invariant Framed Presheaves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 103-127
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_320_a5/
%G ru
%F TM_2023_320_a5
Andrei E. Druzhinin; Ivan A. Panin. Surjectivity of the \'Etale Excision Map for Homotopy Invariant Framed Presheaves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 103-127. http://geodesic.mathdoc.fr/item/TM_2023_320_a5/

[1] Ananyevskiy A., Garkusha G., Panin I., “Cancellation theorem for framed motives of algebraic varieties”, Adv. Math., 383 (2021), 107681 ; arXiv: 1601.06642 | DOI | MR | Zbl

[2] Garkusha G., Neshitov A., Panin I., “Framed motives of relative motivic spheres”, Trans. Amer. Math. Soc., 374:7 (2021), 5131–5161 ; arXiv: 1604.02732v3 | DOI | MR | Zbl

[3] Garkusha G., Panin I., “Homotopy invariant presheaves with framed transfers”, Cambridge J. Math., 8:1 (2020), 1–94 ; arXiv: 1504.00884v3 | DOI | MR | Zbl

[4] Garkusha G., Panin I., “Framed motives of algebraic varieties (after V. Voevodsky)”, J. Amer. Math. Soc., 34:1 (2021), 261–313 ; arXiv: 1409.4372v4 | DOI | MR | Zbl

[5] Garkusha G., Panin I., “Triangulated categories of framed bispectra and framed motives”, Algebra i analiz, 34:6 (2022), 135–169 ; arXiv: 1809.08006 | Zbl

[6] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (troisième partie), Publ. math. Inst. hautes étud. sci., 28, Inst. hautes étud. sci., Bures-sur-Yvette, 1966 | MR

[7] Morel F., Voevodsky V., “$\mathbb A^1$-homotopy theory of schemes”, Publ. math. Inst. hautes étud. sci., 90 (1999), 45–143 | DOI | MR | Zbl

[8] Panin I., Stavrova A., Vavilov N., “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I”, Compos. math., 151:3 (2015), 535–567 | DOI | MR | Zbl

[9] Voevodsky V., “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl

[10] Voevodsky V., Notes on framed correspondences, Preprint (unfinished), 2001 https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/framed.pdf