Jordan Property for the Cremona Group over a Finite Field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 298-310
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the Cremona group of rank $2$ over a finite field is Jordan, and provide an upper bound for its Jordan constant which is sharp when the number of elements in the field is different from $2$, $4$, and $8$.
@article{TM_2023_320_a12,
author = {Yuri G. Prokhorov and Constantin A. Shramov},
title = {Jordan {Property} for the {Cremona} {Group} over a {Finite} {Field}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {298--310},
publisher = {mathdoc},
volume = {320},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2023_320_a12/}
}
TY - JOUR AU - Yuri G. Prokhorov AU - Constantin A. Shramov TI - Jordan Property for the Cremona Group over a Finite Field JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 298 EP - 310 VL - 320 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_320_a12/ LA - ru ID - TM_2023_320_a12 ER -
Yuri G. Prokhorov; Constantin A. Shramov. Jordan Property for the Cremona Group over a Finite Field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 298-310. http://geodesic.mathdoc.fr/item/TM_2023_320_a12/